不规则太阳电池临近空间发电模型构建与分析

刘乾石, 徐国宁, 李兆杰, 高阳, 杨燕初

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 73-79.

PDF(1719 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1719 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 73-79. DOI: 10.19912/j.0254-0096.tynxb.2021-0330

不规则太阳电池临近空间发电模型构建与分析

  • 刘乾石1,2, 徐国宁1,2, 李兆杰1,2, 高阳1,2, 杨燕初1,2
作者信息 +

RESEARCH AND ANALYSIS OF IRREGULAR SOLAR CELLS POWER GENERATION MODEL IN NEAR SPACE

  • Liu Qianshi1,2, Xu Guoning1,2, Li Zhaojie1,2, Gao Yang1,2, Yang Yanchu1,2
Author information +
文章历史 +

摘要

临近空间长航时飞行器(平流层飞艇、太阳能飞机、高空科学气球等)是目前高空平台(HAPS)的一种发展趋势。目前临近空间长航时飞行器的能量来源主要是太阳电池,由于飞行器形状和体积不同,太阳电池安装位置和面积也不同。飞行器有效铺装面积有限,为了实现能量平衡,因需要铺装更大面积,会遇到不规则形状铺装的情形,但此时的发电预测计算过程比较复杂且速度较慢。该文提出一种基于太阳电池之间关系的发电模型,实现任意单块太阳电池快速预测光伏阵列发电功率。针对现有飞行器不规则铺设太阳电池的进行仿真分析,结果表明,该模型能够准确预测其发电能力,并解决了不规则太阳电池发电能力的准确预测计算过程复杂和速度较慢的问题,修正后的模型在计算用时效率上最多可减少50%。

Abstract

Long endurance aircraft in aerospace (stratospheric airship, solar powered plane, high altitude scientific balloon, etc.) can stay in near space for a long time. It is an ideal experimental platform for all kinds of loads and has become a research hotspot across the whole world in recent years. At present, the main energy source of near space long endurance aircraft is solar cells. Due to the different shape and volume of aerospace vehicles, the installation location and area of solar cells are also different. Some long endurance aircraft have limited pavement area. In order to achieve energy balance, solar cells with larger laying area will encounter irregular shape laying method. At this time, the calculation process of power generation prediction is complex and slow. This paper proposes a power generation model based on the relationship between solar cells, and the simulation analysis of the existing aircraft with irregular solar cells is carried out. The simulation results show that the model can accurately predict its power generation capacity. Meanwhile, the model can also solves the problem of complex and slows calculation process of irregular solar cell power generation capacity.

关键词

太阳电池 / 临近空间飞行器 / 平流层飞艇 / 临近空间 / 仿真模型

Key words

solar cell / aerospace vehicles / stratospheric airship / near space / simulation model

引用本文

导出引用
刘乾石, 徐国宁, 李兆杰, 高阳, 杨燕初. 不规则太阳电池临近空间发电模型构建与分析[J]. 太阳能学报. 2022, 43(7): 73-79 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0330
Liu Qianshi, Xu Guoning, Li Zhaojie, Gao Yang, Yang Yanchu. RESEARCH AND ANALYSIS OF IRREGULAR SOLAR CELLS POWER GENERATION MODEL IN NEAR SPACE[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 73-79 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0330
中图分类号: TM91   

参考文献

[1] 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.
HUANG W N, ZHANG X J, LI Z B, et al.Development status and application prospect of near space science and technology[J]. Science & technology review, 2019, 37(21): 48-64.
[2] 刘畅, 许相玺. 临近空间飞行器——改变未来战场规则的新型武器[J]. 军事文摘, 2020(17): 46-49.
LIU C, XU X X.Aerospace vehicles—A new weapon to change the rules of future battlefield[J]. Military digest, 2020(17): 46-49.
[3] ZHU M, YIN S, LIANG H Q.Near space airship conceptual design and optimization[J]. Journal of communications & information networks, 2016, 1(1): 125-133.
[4] 朱炳杰, 杨希祥, 麻震宇, 等. 平流层飞艇太阳电池系统产能分析[J]. 国防科技大学学报, 2019, 41(1): 13-18.
ZHU B J, YANG X X, MA Z Y, et al.Power analysis of stratospheric airship’s solar array system[J]. Journal of National University of Defense Technology, 2019, 41(1): 13-18.
[5] 朱炳杰, 杨宇丹, 杨希祥, 等. 太阳能飞行器能源昼夜闭环仿真分析[J]. 宇航学报, 2019, 40(8): 34-42.
ZHU B J, YANG Y D, YANG X X, et al.Energy closed-loop simulation and analysis for solar powered aircraft round the clock[J]. Journal of astronautics, 2019, 40(8): 34-42.
[6] 刘多能, 杨希祥, 侯中喜. 平流层飞艇能源系统仿真与续航时间估算[C]//第三届高分辨率对地观测学术年会优秀论文集, 长沙, 2014.
LIU D N, YANG X X, HOU Z X.Energy System Simulation and Duration Estimation for Stratosphere Airship[C]//China High Resolution Earth Observation Conference, Changsha, China, 2014.
[7] YANG X X, LIU D N.Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable energy, 2017, 113:1070-1076.
[8] DU H F, ZHU W Y, WU Y F, et al.Effect of angular losses on the output performance of solar array on long-endurance stratospheric airship[J]. Energy conversion and management, 2017, 147: 135-144.
[9] LI J, LIAO J, LIAO Y X, et al.An approach for estimating perpetual endurance of the stratospheric solar-powered platform[J]. Aerospace science and technology, 2018, 79(8): 118-130.
[10] 施红, 宋保银, 姚秋萍. 平流层飞艇太阳能源系统研究[J]. 中国空间科学技术, 2009, 29(1): 26-31.
SHI H, SONG B Y, YAO Q.Study of the solar power system of stratospheric airships[J]. Chinese space science and technology, 2009, 29(1): 26-31.
[11] 沈辉, 曾祖勤. 太阳能光伏发电技术[M]. 北京: 化学工业出版社, 2005.
SHEN H, ZENG Z Q.Solar photovoltaic power generation technology[M]. Beijing: Chemical Industry Press, 2005.

基金

中国科学院战略性先导科技专项(临近空间科学实验系统)(XDA17020304)

PDF(1719 KB)

Accesses

Citation

Detail

段落导航
相关文章

/