计及电网频率偏差的双馈风电机组频率控制策略

许益恩, 杨德健, 郑太英, 张新松, 华亮

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 229-235.

PDF(2932 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2932 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 229-235. DOI: 10.19912/j.0254-0096.tynxb.2021-0340

计及电网频率偏差的双馈风电机组频率控制策略

  • 许益恩1, 杨德健1, 郑太英2, 张新松1, 华亮1
作者信息 +

FREQUENCY CONTROL STRATEGY OF DOUBLY-FED WIND GENERATORS CONSIDERING GRID FREQUENCY DEVIATION

  • Xu Yien1, Yang Dejian1, Zheng Taiying2, Zhang Xinsong1, Hua Liang1
Author information +
文章历史 +

摘要

针对电力系统发生大扰动时,双馈风电机组采用现有下垂控制方法不能充分利用自身旋转动能为电网提供频率响应服务,提出一种计及电网频率偏差的变系数双馈风力发电机组频率控制策略。该方法通过将下垂系数与电网频率偏差耦合,可根据电网频率变化量灵活地调节下垂系数,实现在系统发生大扰动时风电机组更有效地为电力系统提供频率支撑,并借助EMTP-RV仿真平台搭建含高比例风电渗透率的电力系统模型,验证所提控制策略的有效性。仿真结果表明,在不同风速场景下,当电力系统发生不同扰动时,双馈风电机组采用该策略均可有效提升自身频率响应能力,减少系统最大频率偏差,特别是在大扰动场景下,效果更加明显。

Abstract

When a large distur bance occurs in the power system,the existing droop control method of doubly-fed induction generators (DFIGs) are unable to fully utilize its rotating kinetic energy to provide frequency response service for the power grid. This paper proposed a frequency control method with variable droop control coefficient considering the system frequency deviation. The proposed method couples the variable droop control coefficient with the system frequency deviation so as to regulate the control coefficient according to the frequency deviation and further realizes that the DFIGs provide frequency support for the power system with more efficiency under severe disturbances. The power system model with high wind power penetration is established by using EMTP-RV simulation platform. The simulation results show that DFIGs can effectively improve frequency response capability and reduce the maximum frequency deviation when different disturbances occur in the power system,especially in the case of a severe disturbance.

关键词

风电功率 / 风力发电机组 / 电网频率调节 / 变下垂系数 / 频率响应

Key words

wind power / wind turbines / electric grid frequency regulation / variable droop coefficient / frequency response

引用本文

导出引用
许益恩, 杨德健, 郑太英, 张新松, 华亮. 计及电网频率偏差的双馈风电机组频率控制策略[J]. 太阳能学报. 2022, 43(10): 229-235 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0340
Xu Yien, Yang Dejian, Zheng Taiying, Zhang Xinsong, Hua Liang. FREQUENCY CONTROL STRATEGY OF DOUBLY-FED WIND GENERATORS CONSIDERING GRID FREQUENCY DEVIATION[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 229-235 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0340
中图分类号: TM614   

参考文献

[1] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29-35, 50.
WANG N B, MA M, QIANG T B, et al.High-penetration new energy power system development: challenges, opportunities and countermeasures[J]. Electric power, 2018, 51(1): 29-35, 50.
[2] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.
CHEN G P, DONG Y, LIANG Z F.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[3] 陈国平, 李明节, 许涛, 等. 关于新能源发展的技术瓶颈研究[J]. 中国电机工程学报, 2017, 37(1): 20-26.
CHEN G P, LI M J, XU T, et al.Study on technical bottleneck of new energy development[J]. Proceedings of the CSEE, 2017, 37(1): 20-26.
[4] 唐晓骏, 蔡继朝, 马世英, 等. 双馈风电并网对电力系统频率响应的影响[J]. 电力系统及其自动化学报, 2020, 32(10): 37-43.
TANG X J, CAI J Z, MA S Y, et al.Effects of DFIG wind power grid-connection on frequency response of power system[J]. Proceedings of the CSU-EPSA, 2020, 32(10): 37-43.
[5] 钟诚, 周顺康, 严干贵. 基于自适应系数风电场一次频率控制策略研究[J]. 太阳能学报, 2018, 39(10): 2908-2917.
ZHONG C, ZHOU S K, YAN G G, et al.Research on primary frequency regulation strategy of wind farm based on adaptive coefficients[J]. Acta energiae solaris sinica, 2018, 39(10): 2908-2917.
[6] 段士伟, 杨修宇, 柴仁勇, 等. 大规模风电接入的灵活性资源优化配置方法[J]. 东北电力大学学报, 2020, 40(6): 45-51.
DUAN S W, YANG X Y, CHAI R Y, et al.Optional configuration method of flexibility re-sources of high-penetration renewable energy[J]. Journal of Northeast Dianli University, 2020, 40(6): 45-51.
[7] 杨蕾, 王智超, 周鑫, 等. 大规模双馈风电机组并网频率稳定控制策略[J]. 中国电力, 2021, 54(5): 186-194.
YANG L, WANG Z C, ZHOU X, et al.Control strategy for frequency stability after large-scale DFIG connection[J]. Electric Power, 2021, 54(5): 186-194.
[8] 孙华东, 许涛, 郭强, 等. 英国“8·9”大停电事故分析及对中国电网的启示[J]. 中国电机工程学报, 2019, 39(21): 84-89.
SUN H D, XU T, GUO Q, et al.Analysis on blackout in Great Britain power grid on August 9th,2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 84-89.
[9] 文云峰, 杨伟峰, 林晓煌. 低惯量电力系统频率稳定性分析与控制综述及展望[J]. 电力自动化设备, 2020, 40(9): 211-222.
WEN Y F,YANG W F, LIN X H.Review and prospect of frequency stability analysis and control of low-inertia power systems[J]. Electric power automation equipment, 2020, 40(9): 211-222.
[10] GB/T 19963——2011, 风电场接入电力系统技术规定[S].
GB/T 19963——2011, Technical specification for wind farm access to power system[S].
[11] EirGrid. EirGrid grid code version 3.4[DB/OL]. www.eirgrid.com.
[12] Nordic Grid.Nordic grid code 2007[R]. Norway: Nordic Grid, 2007.
[13] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232.
ZHANG G F, YANG J Y, SUN F, et al.Primary frequency regulation strategy of DFIG based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232.
[14] WU Y K, YANG W H, HU Y L, et al.Frequency regulation at a wind farm using a timing-varying inertia and droop controls[J]. IEEE transactions on industry applications, 2019, 55(1): 213-224.
[15] LI Y J, XU Z, WONG K P.Advance control strategies of PMSG-based wind turbines for system inertia support[J]. IEEE transactions on power systems, 2017, 32(4): 3027-3037.
[16] RAMTHARAN G, EKANAYAKE J B, NICK J.Frequency support from doubly-fed induction generator wind turbines[J]. IET renewable power generation, 2007, 1(1): 3-9.
[17] 范冠男, 刘吉臻, 孟洪民, 等. 电网限负荷条件下风电场一次调频策略[J]. 电网技术, 2016, 40(7): 2030-2037.
FAN G N, LIU J Z, MENG H M, et al.Primary frequency control strategy for wind farms under output-restricted condition[J]. Power system technology, 2016, 40(7): 2030-2037.
[18] LEE J, MULJADI E, POUL S, et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on power systems, 2016, 7(1): 279-288.
[19] HU Y L, WU Y K.Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control[J]. IEEE transactions on industry applications, 2019, 55(3): 2300-2309.
[20] 何仰赞, 温增银. 电力系统分析[M]. 下册. 武汉: 华中科技大学出版社, 2006: 111-116.
HE Y Z, WEN Z Y.Power system analysis[M]. Volume II. Wuhan: Huazhong University of Science and Technology Press, 2006: 111-116.

基金

国家自然科学基金(51877112); 南通市基础科技项目(JC2019092); 江苏省高校自然科学基金(20KJB470026)

PDF(2932 KB)

Accesses

Citation

Detail

段落导航
相关文章

/