为揭示台风-浪-流耦合作用下风力机基础结构的水动力特性,以广东外罗10 MW级海上风力机为研究对象,基于模式耦合器(MCT)建立中尺度台风-浪-流(W-S-F)实时耦合模拟平台,分析超强台风“威马逊”过境全过程海上风电场台风-浪-流的时空演变特性;再结合中/小尺度嵌套方法分析风力机单桩基础水动力荷载分布特性;提出不同波浪相位下基础柱极值荷载模型。结果表明:建立的W-S-F平台对台风路径的模拟精度较单WRF模式提高42.51%;台风-浪-流耦合作用下基础柱水平波浪力正峰值增大约20%,负峰值减小约18%,并沿水深方向呈指数型变化规律,周向沿180°波向角呈对称分布;T4相位为风力机基础强度设计的最不利相位,基底剪力最大达7.68×106量级,基底弯矩最大达5.2×108量级。
Abstract
To disclose hydrodynamic characteristics of the foundation structure of wind turbine under typhoon-wave-current coupling action, a 10 MW super-large offshore wind turbine in Wailuo Wind Farm, Guangdong was chosen as a research object and a real-time meso-scale WRF-SWAN-FVCOM (W-S-F) coupling simulation platform was constructed by using Model Coupling Toolkit (MCT). The spatial-temporal evolution of typhoon-wave-current in the offshore wind farm was simulated when a super typhoon “Ramason” passed through. Next,the hydrodynamic load distribution characteristics of the single pile foundation of wind turbine were analyzed by combining the meso-micro scale nested method. The extreme load model of the foundation piles under different wave phases was proposed. Results demonstrate that the constructed W-S-F platform increases the simulation precision of typhoon path by 42.51% than single WRF model. Under the coupling action of typhoon-wave-current, the positive peak value of the horizontal wave force of the foundation column increases by about 20%, and the negative peak value decreased by about 18%. The wave force changes exponentially along the direction of the water depth, and the circumferential wave force is symmetrical along the 180° wave angle. The T4 phase is the most adverse phase for the design of the wind turbine foundation strength, with the maximum base shear force of 7.68E6 magnitude and the maximum base bending moment of 5.2E8 magnitude.
关键词
台风-浪-流耦合 /
海上风力机 /
中/小尺度 /
水动力荷载特性
Key words
typhoon-wave-current coupling /
offshore wind turbines /
meso-micro scale /
hydrodynamic load characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LYDDON C, BROWN J M, LEONARDI N, et al.Quantification of the uncertainty in coastal storm hazard predictions due to wave-current interaction and wind forcing[J]. Geophysical research letters, 2019, 46(24): 14576-14585.
[2] 王海龙. 风力发电工程技术丛书风电场台风灾害防护[M]. 北京: 中国水利水电出版社, 2017: 115-140.
WANG H L.Wind power engineering technology series wind farm typhoon disaster prevention[M]. Beijing: China Water Power Press, 2017: 115-140.
[3] HALLOWELL S T, MYERS A T, ARWADE S R, et al.Hurricane risk assessment of offshore wind turbines[J]. Renewable energy, 2018, 125(9): 234-249.
[4] WANG H, KE S T, WANG T G, et al.Typhoon-induced vibration response and the working mechanism of large wind turbine considering multi-stage effects[J]. Renewable energy, 2020, 153: 740-758.
[5] KE S T, YU W L, CAO J F, et al.Aerodynamic force and comprehensive mechanical performance of large wind turbine during typhoon based on WRF/CFD nesting[J]. Applied sciences, 2018, 8(10): 1982.
[6] 余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269.
YU W L, KE S T.Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of WRF and CFD[J]. Acta energiae solaris sinica, 2020, 41(12): 260-269.
[7] 李颖, 王文华, 李昕. 地震作用下固定式海上风力机耦合反应分析[J]. 太阳能学报, 2019, 40(9): 2502-2508.
LI Y, WANG W H, LI X.Coupled analysis of fixed bottom offshore wind turbine under seismic loads[J]. Acta energiae solaris sinica, 2019, 40(9): 2502-2508.
[8] LOUP S T, KROKSTAD J R, BACHYNSKI E E, et al.Experimental results of a multimode monopile offshore wind turbine support structure subjected to steep and breaking irregular waves[J]. Ocean engineering, 2017, 146(12): 339-351.
[9] ARUNDHUTI B, TANUSREE C, VASANT M, et al.Dynamic analysis of an offshore wind turbine under random wind and wave excitation with soil-structure interaction and blade tower coupling[J]. Soil dynamics and earthquake engineering, 2019, 125: 105699.
[10] JOEY V, CLAUS K, JOHN D S.Global sensitivity analysis of offshore wind turbine foundation fatigue loads[J]. Renewable energy, 2019, 140: 177-189.
[11] HORN J T, KROKSTAD J R, AMDAHL J.Long-term fatigue damage sensitivity to wave directionality in extra-large monopile foundations[J]. Proceedings of the institution of mechanical engineers, 2018, 232(1): 37-49.
[12] JOEY V, CLAUS K, JOHN D S, et al.Fatigue reliability of large monopiles for offshore wind turbines[J]. International journal of fatigue, 2020, 134: 105487.
[13] TIAN J Y, LIU R H, DING L Q, et al.Evaluation of the WRF physical parameterisations for typhoon rainstorm simulation in southeast coast of China[J]. Atmospheric research, 2021, 247: 105130.
[14] XU Y, WANG Z F.Response of surface ocean conditions to typhoon Rammasun(2014)[J]. Journal of coastal research, 2017, 80(sp1): 92-97.
[15] GU B H, WOO S B, KIM S.Improved estuaries salinity stratification at Gyeonggi Bay using data assimilation with finite volume coastal ocean model (FVCOM)[J]. Journal of coastal research, 2019, 91(sp1): 416-420.
[16] FANG Y, DUAN L, HAN Z L, et al.Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion[J]. Energy, 2020, 192:116621.
[17] JUNWON S, WILLIAM S, MONIQUE H, et al.Integrated FEM and CFD simulation for offshore wind turbine structural response[J]. International journal of steel structures, 2019, 19(4): 1112-1124.
[18] PAN L, SHI Z, XIAO H.Parameter design and optimization for camber of vertical axis offshore wind turbine using CFD[J]. Journal of ocean engineering and marine energy, 2020, 6(4): 1-19.
[19] KE S T, XU L, WANG T G.Aerodynamic performance and wind-induced responses of large wind turbine systems with meso-scale typhoon effects[J]. Energies, 2019, 12(19): 3696.
[20] 董志, 詹杰民. 基于VOF方法的数值波浪水槽以及造波、消波方法研究[J]. 水动力学研究与进展A辑, 2009, 24(1): 15-21.
DONG Z, ZHAN J M.Comparison of existing methods for wave generating and absorbing in VOF-based numerical tank[J]. Journal of hydrodinamics A, 2009, 24(1): 15-21.
[21] 邹志利, 严以新. 海岸动力学[M]. 第4版. 北京: 人民交通出版社, 2009: 94-95.
ZOU Z L, YAN Y X.Coastal Dynamics[M]. 4th Ed. Beijing: China Communications Press, 2009: 94-95.
[22] 李玉成. 波浪与水流共同作用下的流速场[J]. 海洋工程, 1983(4): 12-23.
LI Y C.Velocity field for interacting waves and currents[J]. The ocean engineering, 1983(4): 12-23.
[23] GB 50009——2012, 建筑结构荷载规范[S].
GB 50009——2012, Load code for the design of building structures[S].
[24] 伍志元, 蒋昌波, 邓斌, 等. 基于WRF-SWAN耦合模式的台风“威马逊”波浪场数值模拟[J]. 海洋科学, 2018, 42(9): 64-72.
WU Z Y, JIANG C B, DENG B, et al.Simulation of extreme waves generated by typhoon Rammasun(1409) based on coupled WRF-SWAN model[J]. Marine sciences, 2018, 42(9): 64-72.
[25] Det Norske Veritas.Design of offshore wind turbine structures: DNV-OS-J101[S].
[26] JTS 145——2015, 港口与航道水文规范[S].
JTS 145——2015, Code of hydrology for harbour and waterway[S].
基金
国家重点研发计划(2017YFE0132000; 2019YFB1503701); 国家自然科学基金(52078251); 江苏省杰出青年基金(BK20211518); 中央高校基本科研业务费专项资金项目(NS2021050; NE2020007)