在Frandsen非线性尾流半径假设的基础上,推导得出考虑环境湍流强度和风力机推力系数影响的Frandsen高斯修正尾流速度模型,并提出Frandsen双高斯湍流强度模型。以600 kW单风力机为案例,通过开展风洞试验和大涡模拟2种研究手段验证2个修正模型的预测效果。结果表明,Frandsen高斯修正尾流速度模型在径向尾流上预测效果更好,模型平均误差下降至7%,优于Frandsen速度模型。Frandsen双高斯湍流强度模型则能更好反映实际湍流强度在尾流场的变化特征。2种修正模型均比传统模型具有更好的预测效果,为风力机设计提供了新的尾流模型。
Abstract
Based on the Frandsen nonlinear wake radius hypothesis, the Frandsen Gaussian wake velocity model was modified by considering the influence of environmental turbulence intensity and thrust coefficient, and the Frandsen double Gaussian turbulence intensity model was proposed. Taking a 600 kW wind turbine as an example, a wind tunnel test and large eddy simulation were carried out to verify the accuracy of the two modified wake models. The results show that the Frandsen Gaussian modified wake velocity model can achieve a better prediction of wake along the radial direction. The average error of the modified wake model drops to 7%, which is much smaller than the error of original Frandsen velocity model. The Frandsen double Gaussian turbulence intensity model is able to capture the real characteristics of turbulence intensity in the wake field. Both modified wake models are capable of providing better predictions of wake field than original Frandsen wake models, and can be serviced as new wake models in practice.
关键词
风力机 /
尾流 /
高斯分布 /
风洞试验 /
数值模拟
Key words
wind turbines /
wakes /
Gaussian distribution /
wind tunnel test /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SANDERSE B.Aerodynamics of wind turbine wakes literature review[R]. ECN-E-09-016, 2009.
[2] TAYLOR G J, MILBORROW D J, MC-INTOSH D N, et al. Wake measurements on the Nibe windmills[C]//Proceedings of seventh BWEA wind energy conference,Oxford, UK, 1985.
[3] CLEIJNE J W.Results of the sexbierum wind farm single wake measurement[R]. TNO-Report 93-082, 1993.
[4] 李万润, 栾雪涛, 王雪平, 等. 基于实测数据的西北地区风电场风场及尾流特性分析[J]. 东南大学学报(自然科学版), 2018, 48(4): 699-705.
LI W R, LUAN X T, WANG X P, et al.Analysis of wind field and wake characteristics of wind farm in Northwest China based on measured data[J]. Journal of Southeast University(natural science edition), 2018, 48(4): 699-705.
[5] CHAMORRO L P, PORTÉ-AGEL F.A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects[J]. Boundary-Layer meteorology, 2009, 132(1): 129-149.
[6] 胡丹梅, 郑筱凯, 张建平. 风力机不同排列方式下尾迹数值模拟[J]. 可再生能源, 2015, 33(5): 684-692.
HU D M, ZHENG X K, ZHANG J P.Wake numerical simulation of wind turbine in different arrangement[J]. Renewable energy resource, 2015, 33(5): 684-692.
[7] 陈秋华, 赖旭. 基于SPIV的风力机叶尖涡与尾流流场相关性研究[J]. 太阳能学报, 2016, 37(2): 297-302.
CHEN Q H, LAI X.SPIV analysis of correlation of tip vortex and wake flow of horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2016, 37(2): 297-302.
[8] WU Y, PORTÉ-AGEL F.Atmospheric turbulence effects on wind-turbine wakes:an les study[J]. Energies, 2012, 5(12): 5340-5362.
[9] FRANDSEN S, BARTHELMIE R, PRYOR S, et al.Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind energy, 2006, 9(1-2): 39-53.
[10] FRANDSEN S.Turbulence and turbulence generated fatigue in wind turbine clusters[R]. Risø-R-1188, 2003.
[11] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renewable energy, 2014, 70(1): 116-123.
[12] GE M W, WU Y, LIU Y Q, et al.A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes[J]. Apply energy, 2019(233-234): 975-984.
[13] GAO X X, LI B B, WANG T G, et al.Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements[J]. Applied energy, 2020, 260: 114272.
[14] GB 50009——2012, 建筑结构荷载规范[S].
GB 50009——2012, Load code for building structures[S].
[15] SØRENSEN J N. Aerodynamic aspects of wind energy conversion[J]. Annual review of fluid mechanics, 2011, 43(1): 427-448.
[16] WU Y, PORTÉ-AGEL L F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-layer meteorology, 2011, 138(3): 345-366.
[17] YU Y, YANG Y, XIE Z.A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building[J]. Building and Environment, 2018, 138: 300-313.
[18] 黄铭枫, 孙建平, 王义凡, 等. 基于天气预报模式和大涡模拟的台风风场多尺度耦合数值模拟[J]. 建筑结构学报, 2020, 41(2): 63-70.
HUANG M F, SUN J P, WANG Y F, et al.Multi-scale simulation of typhoon wind fields by coupling of weather research and forecasting model and large-eddy simulation[J]. Journal of Building Structures, 2020, 41(2): 63-70.
基金
科技部政府间国际科技创新合作重点专项(2018YFE0109500); 浙江省自然科学基金委员会重点项目(LZ22E080006)