构建基于NREL 5 MW 风电机组的海上固定式风电场和不同类型的漂浮式风电场,考虑不同类型风电机组尾流特性、平台漂浮特性的差异,在不同工况下对风电场内机组动力学响应进行仿真计算。通过时域分析与箱线图分析,对风电场内各位置处机组在风、浪、尾流联合作用下的塔基载荷进行对比研究。结果表明:在相同工况下,Spar式风电场内机组风轮与平台位移值、塔基载荷在来流方向上最大;在中低风速下,风电场内机组塔基载荷相差较大;高风速时,塔基载荷相近;随着风速的增大,漂浮式机组塔基载荷呈先增大后减小的规律。
Abstract
Constructing bottom-fixed wind farms and different types of floating wind farms based on NREL 5 MW wind turbines, considering the differences in wake characteristics and platform characteristics of different types of wind turbines, the dynamic response of the wind turbines in the wind farm is simulated under different working conditions. Through time domain analysis and box plot analysis, a comparative study of the tower base load of the upstream and downstream wind turbines in the wind farm under the combined action of wind, waves and wakes is carried out. The results show that under the same working conditions, the displacement value of the rotor and the platform of the type of Spar wind turbines in wind farm and the tower base load are the largest in the incoming flow direction; at low to moderate wind speeds, the tower base load of the wind turbines at different positions vary greatly; at high wind speeds, the tower base load is similar at different positions; as the wind speed increases, the tower base load of the floating unit increases first and then decreases.
关键词
海上风电机组 /
动力学响应 /
时域分析 /
漂浮式风电场 /
载荷特性
Key words
offshore wind turbines /
dynamic response /
time domain analysis /
floating wind power plant /
load characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李子林, 施岐璘. 浅谈深远海域风电发展前景[J]. 太阳能, 2018, 6: 31-34, 60.
LI Z L, SHI Q L.Discussion on the development prospects of wind power in far-reaching waters[J]. Solar energy, 2018, 6: 31-34, 60.
[2] 许移庆, 张友林. 漂浮式海上风电发展概述[J]. 风能, 2020, 5: 56-61.
XU Y Q, ZHANG Y L.Overview of floating offshore wind power development[J]. Wind energy, 2020, 5: 56-61.
[3] 李飞龙, 周腊吾, 李玲, 等. 基于蚁群算法的Spar型浮式风电机组独立变桨控制方法[J]. 可再生能源, 2020, 38(6): 771-777.
LI F L, ZHOU L W, LI L, et al.Spar-type floating wind turbine independent pitch control method based on ant colony algorithm[J]. Renewable energy, 2020, 38(6): 771-777.
[4] 陈明亮, 吴俊辉, 徐洋洋, 等. 两种不同基础的漂浮式风电机组载荷对比分析[J]. 水电与新能源, 2020, 34(2): 68-74, 81.
CHEN M L, WU J H, XU Y Y, et al.Comparative analysis of loads on two floating wind turbines with different foundations[J]. Hydropower and new energy, 2020, 34(2): 68-74, 81.
[5] 罗涛, 田德, 陈静, 等. 10 MW漂浮式风电机组风轮叶片响应特性研究[J]. 太阳能学报, 2018, 39(9): 2669-2677.
LUO T, TIAN D, CHEN J, et al.Research on the response characteristics of rotor blades of 10 MW floating wind turbines[J]. Acta energiae solaris sinica, 2018, 39(9): 2669-2677.
[6] 刘德顺, 刘子其, 戴巨川, 等. 海上漂浮式风电机组风波载荷计算与分析[J]. 中国机械工程, 2016, 27(1): 32-40, 45.
LIU D S, LIU Z Q, DAI J C, et al.Wind wave load calculation and analysis of offshore floating wind turbines[J]. China mechanical engineering, 2016, 27(1): 32-40, 45.
[7] JONKMAN J M, BUHL M.Loads analysis of a floating offshore wind turbine using fully coupled simulation: preprint[R]. NREL/CP-500-41714, 2007.
[8] 李辉, 蔡梅园, 侯承宇, 等. 不同波浪载荷计算方法对漂浮式风电机组动态响应影响分析[J]. 风能, 2020, 7: 82-89.
LI H, CAI M Y, HOU C Y, et al.Analysis of the influence of different wave load calculation methods on the dynamic response of floating wind turbines[J]. Wind energy, 2020, 7: 82-89.
[9] LEE H, LEE D J.Effects of platform motions on aerodynamic performance and unsteady wake evolution of a floating offshore wind turbine[J]. Renewable energy, 2019, 143: 9-23.
[10] 《风能》编辑部. 海上风电开发基础选型先行[J]. 风能, 2020(2): 24-35.
《Wind energy》editorial board. Offshore wind power development, basic selection first[J]. Wind energy, 2020(2): 24-35.
[11] Tony Burton, Nick Jenkins, David Sharpe, 等. 风能技术[M]. 北京: 科学出版社, 2014.
BURTON T, JENKINS N, SHARPE D, et al.Wind energy technology[M]. Beijing: Science Press, 2014.
[12] 卫涛. 基于TLP原理的海上风电机组浮式基础研究[D]. 南京: 江苏科技大学, 2014.
WEI T.Basic research on floating type of offshore wind turbine based on TLP principle[D]. Nanjing: Jiangsu University of Science and Technology, 2014.
[13] 张智伟, 李辉, 李力森. 6 MW漂浮式风电机组极限载荷特性研究[J]. 可再生能源, 2017, 35(8): 1229-1235.
ZHANG Z W, LI H, LI L S.Research on ultimate load characteristics of 6 MW floating wind turbines[J]. Renewable energy, 2017, 35(8): 1229-1235.
[14] HALL M, GOUPEE A.Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data[J]. Ocean engineering, 2015, 104: 590-603.
[15] JONKMAN J M, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5 MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[16] 李泽, 朱娟, 花国然, 等. 海上嵌岩大直径单桩基础的疲劳分析[J]. 工程机械, 2019, 50(12): 11-15.
LI Z, ZHU J, HUA G R, et al.Fatigue analysis of large-diameter rock-socketed single pile foundation at sea[J]. Construction machinery, 2019, 50(12): 11-15.
[17] JONKMAN J M, MATHA D.Dynamics of offshore floating wind turbines-analysis of three concepts[J]. Wind energy, 2011, 14(4): 557-569.
[18] ROBERTSON A, JONKMAN J, MASCIOAL M, et al.Definition of the semisubmersible floating system for phase II of OC4[R]. NREL/TP-5000-60601, 2014.
[19] 李欣. 复杂风浪联合作用下张力腿漂浮式风电机组载荷知能控制研究[D]. 北京: 中国科学院大学, 2018.
LI X.Research on load intelligent control of tension leg floating wind turbine under the combined action of complex wind and waves[D]. Beijing: Univerdity of Chinese Acadeny of Sciences, 2018.
基金
辽宁省“兴辽英才计划”(XLYC1802041); 辽宁省中央引导地方科技发展资金计划(2021JH6/10500166)