表面疏水性对结冰切向粘结强度影响试验研究

石磊, 李岩, 冯放, 郭文峰, 赵斌

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 493-498.

PDF(2503 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2503 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 493-498. DOI: 10.19912/j.0254-0096.tynxb.2021-0372

表面疏水性对结冰切向粘结强度影响试验研究

  • 石磊1,2, 李岩1, 冯放3, 郭文峰1, 赵斌4
作者信息 +

EXPERIMENTAL STUDY ON INFLUENCE OF SURFACE HYDROPHOBICITY ON ICING TANGENTIAL BOND STRENGTH

  • Shi Lei1,2, Li Yan1, Feng Fang3, Guo Wenfeng1, Zhao Bin4
Author information +
文章历史 +

摘要

通过在试样表面制备不同疏水强度的涂层,在-8 ℃及-12 ℃温度下对静态冰和冲击冰2种成冰方式的切向结冰粘结强度进行测试,获得多个工况的切向结冰粘结强度。结果表明:随着温度的升高,无论是静态冰还是冲击冰,结冰粘结强度均呈下降趋势;静态结冰时,疏水性表面能有效降低结冰粘结强度,冲击结冰时,由于接触界面出现霜冰层,疏水性涂层对降低结冰粘结强度的效能较弱。

Abstract

Surface icing brings many problems in the field of energy and electric power. Reducing the bonding strength of icing by constructing a hydrophobic coating on the substrate surface is a research hotspot at this stage. In this paper, the coatings with different hydrophobic strength were prepared on the surface of the sample. The tangential ice bonding strength of static ice and impact ice was tested at-8 and-12, and the tangential ice bonding strength under multiple working conditions was obtained. The test results show that with the increase of temperature, the bond strength of ice has a downward trend both in static ice and impact ice. When static icing, hydrophobic surface can effectively reduce the bonding strength of icing. When impact icing, due to the appearance of frost ice layer at the contact interface, hydrophobic coating has weak effect on reducing the bonding strength of icing.

关键词

光伏发电 / 风力发电 / / 疏水性 / 粘结强度 / 切向粘结力

引用本文

导出引用
石磊, 李岩, 冯放, 郭文峰, 赵斌. 表面疏水性对结冰切向粘结强度影响试验研究[J]. 太阳能学报. 2022, 43(10): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0372
Shi Lei, Li Yan, Feng Fang, Guo Wenfeng, Zhao Bin. EXPERIMENTAL STUDY ON INFLUENCE OF SURFACE HYDROPHOBICITY ON ICING TANGENTIAL BOND STRENGTH[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0372
中图分类号: TK01   

参考文献

[1] 李岩, 王绍龙, 冯放. 风力机结冰与防除冰技术[M]. 北京: 中国水利水电出版社, 2017.
LI Y, WANG S L, FENG F.Wind turbine icing and anti-icing technology[M]. Beijing: China Water & Power Press, 2017.
[2] 李永鑫, 苑海涛. 双玻双面光伏组件在降雪天气时的运行情况分析[J]. 太阳能, 2020(10): 63-67.
LI Y X, YUAN H T.Analysis of operation of bifacial glazing panel PV modules in snowy weather[J]. Solar energy, 2020(10): 63-67.
[3] 陆佳政. 电网覆冰灾害及防治技术[M]. 北京:中国电力出版社, 2016.
LU J Z.Power grid ice disaster and prevention technology[M]. Beijing: China Electric Power Press, 2016.
[4] WEI K X, YANG Y, ZUO H Y, et al.A review on ice detection technology and ice elimination technology for wind turbine[J]. Wind energy, 2020, 23(3): 433-457.
[5] 王勇, 苗虹, 莫思特, 等. 高压架空输电线路防冰、融冰、除冰技术研究综述[J]. 电力系统保护与控制, 2020, 48(18): 178-187.
WANG Y, MIAO H, MO S T, et al.Summary of research on anti-ice, ice melting and de-icing of high voltage overhead transmission lines[J]. Power system protection and control, 2020, 48(18): 178-187.
[6] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
ZHENG H K, CHANG S N, ZHAO Y Y.Anti-icing & icephobic mechanism and applications of superhydrophobic/ultraslippery slippery surface[J]. Progress in chemistry, 2017, 29(1): 102-118.
[7] DOTAN A, DODIUK H, LAFORTE C, et al.The relationship between water wetting and ice adhesion[J]. Journal of adhesion science and technology, 2009, 23(15): 1907-1915.
[8] WANG F C, LYU F C, LIU Y P, et al.Ice adhesion on different microstructure superhydrophobic aluminum surfaces[J]. Journal of adhesion science and technology, 2013, 27(1): 58-67.
[9] 郭琦, 申晓斌, 林贵平, 等. 积冰粘附力试验及影响因素分析[J]. 飞机设计, 2019, 39(4): 33-37.
GUO Q, SHEN X B, LIN G P, et al.Experimental analysis on adhesion force between ice and substrate[J]. Aircraft design, 2019, 39(4): 33-37.
[10] 蒋兴良, 周洪宇, 何凯, 等. 风机叶片运用超疏水涂层防覆冰的性能衰减[J]. 高电压技术, 2019, 45(1): 167-172.
JIANG X L, YANG D Y.Anti-icing performance degradation for wind blades with superhydrophobic coatings[J]. High voltage engineering, 2019, 45(1): 167-172.
[11] 蒋兴良, 杨大友. RTV涂料表面冰层与涂料间粘结力及其影响因素分析[J]. 高电压技术, 2010, 36(6): 1359-1364.
JIANG X L, ZHOU H Y, HE K, et al.Factors of the cohesive force between RTV coating and ice[J]. High voltage engineering, 2010, 36(6): 1359-1364.
[12] 肖春华, 梁鉴, 林伟, 等. 结冰风洞冰与固壁间剪切黏附应力和强度的初步研究[J]. 空气动力学学报, 2018, 36(5): 798-804.
XIAO C H, LIANG J, LIN W, et al.Preliminary study on ice adhesion stress and strength on solid wall in icing wind tunnel[J]. Acta aerodynamica sinica, 2018, 36(5): 798-804.
[13] 丁亮, 易贤, 胡站伟. 飞机结冰粘附强度实验研究[C]//第十一届全国流体力学学术会议论文摘要集, 中国力学学会流体力学专业委员会: 中国力学学会, 深圳, 中国, 2020.
DING L, YI X, HU Z W.Experimental study on aircraft icing adhesion strength[C]//Professional Committee of Fluid Mechanics, Chinese Society of Mechanics: the Chinese Society of Theoretical and Applied Mechanics, Shenzhen, China, 2020.
[14] NAKAKITA K, NADARAJAH S, HABASHI W.Toward real-time aero-icing simulation of complete aircraft via FENSAP-ICE[J]. Journal of aircraft, 2010, 47(1): 96-109.

基金

国家自然科学基金(51976029; 51576037); 结冰与防除冰重点实验室开放课题(IADL20200405)

PDF(2503 KB)

Accesses

Citation

Detail

段落导航
相关文章

/