基于压缩空气储能的CCHP系统特性研究

韩中合, 胡庆亚, 李鹏

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 409-415.

PDF(1893 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1893 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 409-415. DOI: 10.19912/j.0254-0096.tynxb.2021-0406

基于压缩空气储能的CCHP系统特性研究

  • 韩中合, 胡庆亚, 李鹏
作者信息 +

RESEARCH ON CHARACTERISTIES OF CCHP SYSTEM BASED ON COMPRESSED AIR ENERGY STORAGE

  • Han Zhonghe, Hu Qingya, Li Peng
Author information +
文章历史 +

摘要

以先进绝热压缩空气储能(AA-CAES)为基础,构建冷热电联产(CCHP)系统,对比4种不同储气室和运行方式方案下的系统特性,并针对关键参数进行敏感性分析。结果表明,采用恒温储气室且滑压运行时系统储能效率和效率最高;采用恒温储气室且恒压运行时系统能量密度最高。第二级换热器损最大,是提高系统性能时的首要优化目标。当换热器效能提高时,储能效率、效率均出现折点。储气室最大压比越大,系统储能效率和效率越低,能量密度越高。采用恒温储气室时,系统不受压缩/膨胀影响;采用恒壁温储气室时,较高的压缩/膨胀功率有利于提高储能效率和效率,但压缩功率升高会降低能量密度。

Abstract

Based on advanced adiabatic compressed air energy storage (AA-CAES), a combined cooling, heating and power (CCHP) generation system is constructed. The system characteristics under four different gas storage chamber (GSC) and operation schemes are compared. The sensitivity analysis is carried out for the key parameters. The results show that, when the constant-temperature GSC and the sliding-pressure operation are adopted, the energy storage efficiencies and exergy efficiencies have the maximum values. The energy density is the highest when the constant-temperature GSC and the constant-pressure operation is used. The largest exergy destruction occurs in the second-stage heat exchanger (HE2), and HE2 is the primary optimization goal. As the efficiency of the heat exchanger increases, the energy storage efficiencies and exergy efficiencies appear to turning points. The greater the GSC maximum pressure ratio, the smaller the energy storage efficiencies and exergy efficiencies, and the bigger the energy densities. When the constant-temperature GSC is adopted, the system is not affected by compression/expansion power. However, when constant-wall-temperature GSC is adopted, higher compression/expansion power is conducive to energy storage efficiency and exergy efficiency, but an increase in compression power will reduce energy density.

关键词

先进绝热压缩空气储能 / 冷热电联产 / 储气室 / 运行方式 / 系统特性

引用本文

导出引用
韩中合, 胡庆亚, 李鹏. 基于压缩空气储能的CCHP系统特性研究[J]. 太阳能学报. 2022, 43(10): 409-415 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0406
Han Zhonghe, Hu Qingya, Li Peng. RESEARCH ON CHARACTERISTIES OF CCHP SYSTEM BASED ON COMPRESSED AIR ENERGY STORAGE[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 409-415 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0406
中图分类号: TK02   

参考文献

[1] 李瑞, 彭浩, 凌祥, 等. 压缩空气填充床储能系统性能研究[J]. 太阳能学报, 2016, 37(9): 2356-2362.
LI R, PENG H, LING X, et al.A study on the charging performance of a packed bed for compressed air energy storage system[J]. Acta energiae solaris sinica, 2016, 37(9): 2356-2362.
[2] AKINYELE D O, RAYUDU R K.Review of energy storage technologies for sustainable power networks[J]. Sustainable energy technologies and assessments, 2014, 8: 74-91.
[3] 朱瑞, 徐玉杰, 李斌, 等. 太阳能蓄热式压缩空气储能系统特性分析[J].太阳能学报, 2019, 40(6): 1536-1544.
ZHU R, XU Y J, LI B, et al.Performance analysis on solar heat storage type compressed air energy storage system[J]. Acta energiae solaris sinica, 2019, 40(6): 1536-1544.
[4] CONG R G.An optimization mode for renewable energy generation and its application in China: a perspective of maximum utilization[J]. Renewable and sustainable energy reviews, 2013, 17: 94-103.
[5] 韩中合, 王珊, 胡志强, 等. AA-CAES+CSP系统性能及关键参数分析[J]. 太阳能学报, 2021, 42(2): 322-329.
HAN Z H, WANG S, HU Z Q, et al.Analysis on performance and key parameters of AA-CAES+CSP system[J]. Acta energiae solaris sinica, 2021, 42(2): 322-329.
[6] BUDT M, WOLF D, SPAN R, et al.A review on compressed air energy storage: basic principles, past milestones and recent developments[J]. Applied energy, 2016, 170: 250-68.
[7] JUBEH N M, NAJJAR Y S H. Green solution for power generation by adoption of adiabatic CAES system[J]. Applied thermal engineering, 2012, 44: 85-89.
[8] HE W, WANG J H.Optimal selection of air expansion machine in compressed air energy storage: a review[J]. Renewable and sustainable energy reviews, 2018, 87: 77-95.
[9] PROCZKA J J, MURALIDHARAN K, VILLELA D, et al.Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage[J]. Energy conversion and management, 2013, 65: 597-605.
[10] GRAZZINI G, MILAZZO A.Thermodynamic analysis of CAES/TES systems for renewable energy plants[J]. Renewable energy, 2008, 33: 1998-2006.
[11] 李雪梅, 杨科, 张远. AA-CAES系统储气室热力学特性研究[J]. 工程热物理学报, 2015, 36(3): 513-516.
LI X M, YANG K, ZHANG Y.Thermodynamic analysis of storage carvern in advanced adiabatic compressed air storage system[J]. Journal of engineering thermophysics, 2015, 36(3): 513-516.
[12] 韩中合, 郭森闯. AA-CAES系统释能过程运行特性分析[J]. 太阳能学报, 2020, 41(1): 295-301.
HAN Z H, GUO S C.Analysis of the operating characteristics of the AA-CAES system during the energy release process[J]. Acta energiae solaris sinica, 2020, 41(1): 295-301.
[13] HAN Z H, SUN Y, LI P.Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage[J]. Energy conversion and management, 2020, 208: 112573.
[14] MOZAYENI H, NEGNEVITSKY M, WANG X, et al.Performance study of an advanced adiabatic compressed air energy storage system[J]. Energy procedia, 2017, 110: 71-76.
[15] MOZAYENI H, WANG X, NEGNEVITSKY M.Exergy analysis of a one-stage adiabatic compressed air energy storage system[J]. Energy procedia, 2019, 160: 260-267.
[16] HASAN N S, HASSAN M Y, ABDULLAH H, et al.Improving power grid performance using parallel connected compressed air energy storage and wind turbine system[J]. Renewable energy, 2016, 96: 498-508.
[17] TONG S G, CHENG Z W, CONG F Y, et al.Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage[J]. Renewable energy, 2018, 125: 73-86.
[18] 张远, 杨科, 李雪梅, 等. 基于先进绝热压缩空气储能的冷热电联产系统[J]. 工程热物理学报, 2013, 34(11): 1991-1995.
ZHANG Y, YANG K, LI X M, et al.A combined cooling,heating and power(CCHP)system based on advanced adiabatic compressed air energy storage technology[J]. Journal of engineering thermodynamics, 2013, 34(11): 1991-1995.
[19] YAN Y, ZHANG C, LI K, et al.An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage[J]. Applied energy, 2018, 210: 1151-1166.
[20] MOHAMMADDI A, AHMADI M H, BIDI M, et al.Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system[J]. Energy conversion and management, 2017, 131: 69-78.

基金

河北省自然科学基金(E2018502059)

PDF(1893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/