MULTI ENERGY COOPERATIVE GAME OPTIMAL SCHEDULING CONSIDERING FAIRNESS
Wang Yunyun1, Ma Zhicheng2, Zhou Qiang2, Dong Haiying3
Author information+
1. School of Automation &Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. State Grid Gansu Electric Power Research Institute, Lanzhou 730070, China; 3. School of New Energy & Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
Aiming at the problems of operation economy and dispatching fairness of power system with high proportion of renewable energy, a bi level optimal dispatching model with multi energy participation is proposed. The model considers economy and reflects fairness from two aspects: In the upper model, wind farm, photovoltaic power station, pumped storage power station and demand response load are combined to form a virtual power plant (VPP). Secondly, the virtual power plant is taken as a part of the large power grid to participate in the optimal scheduling. Gini coefficient is used to represent the fairness and as a constraint condition, and the objective function is to minimize the total cost. Finally, the upper solution of VPP is taken as the input variable of the lower optimal dispatch. In the lower model, based on the cooperative game theory, a cooperative game model is established with the internal members of VPP as the game participants and the maximum income of each participant as the objective function, and the income distribution of each subject under different alliance combinations is compared by using the equilibrium degree fairness. The equilibrium degree of income distribution is compared among equalization distribution method, distribution by output method and shapely value method. The intelligent optimization algorithm combined with CPLEX solver is used to solve the model, and an example is used to verify the effectiveness and correctness of the model.
Wang Yunyun, Ma Zhicheng, Zhou Qiang, Dong Haiying.
MULTI ENERGY COOPERATIVE GAME OPTIMAL SCHEDULING CONSIDERING FAIRNESS[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 482-492 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0408
中图分类号:
TM73
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姚良忠, 朱凌志, 周明, 等. 高比例可再生能源电力系统的协同优化运行技术展望[J]. 电力系统自动化, 2017, 41(9): 36-43. YAO L Z, ZHU L Z, ZHOU M, et al.Prospects of coordination and optimization for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 36-43. [2] 何畅, 程杉, 徐建宇, 等. 基于多时间尺度和多源储能的综合能源系统能量协调优化调度[J]. 电力系统及其自动化学报, 2020, 32(2): 77-84, 97. HE C, CHENG S, XU J Y, et al.Coordinated optimal scheduling of integrated energy system considering multi-time scale and hybrid energy storage system[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 77-84, 97. [3] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术, 2020, 44(10): 3622-3630. LI T, LI Z W, YANG J Y, et al.Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power system technology, 2020, 44(10): 3622-3630. [4] SUN K Q, LI K J, PAN J P, et al.An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system[J]. Applied energy, 2019, 242: 1155-1163. [5] 刘小聪, 王蓓蓓, 李扬, 等. 计及需求侧资源的大规模风电消纳随机机组组合模型[J]. 中国电机工程学报, 2015, 35(14): 3714-3723. LIU X C, WANG B B, LI Y, et al.Stochastic unit commitment model for high wind power integration considering demand dide resources[J]. Proceedings of the CSEE, 2015, 35(14): 3714-3723. [6] 贠韫韵, 董海鹰, 马志程, 等. 考虑需求响应与光热电站参与的多源系统优化经济调度[J]. 电力系统保护与控制, 2020, 48(14): 140-149. YUN Y Y, DONG H Y, MA Z C, et al.Optimization economic dispatch of a multi-source system considering the participation of demand response and concentrating solar power plant[J]. Power system protection and control, 2020, 48(14): 140-149. [7] 李守东, 董海鹰, 张蕊萍, 等. 考虑风电消纳的电热联合系统多源协调优化运行[J]. 太阳能学报, 2018, 39(8): 2217-2225. LI S D, DONG H Y, ZHANG R P, et al.Muti-source coordination and optimization operation of combined heatand power system considering wind power consumpation[J]. Acta energiae solaris sinica, 2018, 39(8): 2217-2225. [8] LI C Y, ZHAO R S, WANG D, et al.Optimal spatio-temporal scheduling for electric vehicles and load aggregators considering response reliability[J]. Electric power systems research, 2018, 162: 183-193. [9] JU L W, TAN Z F, YUAN J Y, et al.A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response[J]. Applied energy, 2016, 171: 184-199. [10] TAN Z E, WANG G, JU L W, et al.Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand response[J]. Energy, 2017, 124: 198-213. [11] 崔勇, 周晓倩, 刘文, 等. 基于多时空尺度辅助服务的多类能源协同运营优化机制研究[J]. 太阳能学报, 2021, 42(3): 305-310. CUI Y, ZHOU X Q, LIU W, et al.Research on optimization mechanism of multi-energy cooperative based on multi-space-time scaleauxiliary service[J]. Acta energiae solaris sinica, 2021, 42(3): 305-310. [12] 王昊昊, 徐泰山, 马彦宏, 等. 计及多类型电源协调的有功控制策略[J]. 电力系统保护与控制, 2019, 47(4): 167-175. WANG H H, XU T S, MA Y H, et al.A novel active power control strategy considering multi-resource coordination[J]. Power system protection and control, 2019, 47(4): 167-175. [13] 施贵荣, 孙荣富, 徐海翔, 等. 大规模集群可再生能源有功分层协调控制策略[J]. 电网技术, 2018, 42(7): 2160-2167. SHI G R, SUN R F, XU H X, et al.Active power stratification coordination control strategy for large-scale cluster of renewable energy[J]. Power system technology, 2018, 42(7): 2160-2167. [14] 孙亮, 张娜, 李宁, 等. 基于基尼系数电量进度公平性的日内滚动发电计划[J]. 电网技术, 2020, 44(1): 340-347. SUN L, ZHANG N, LI N, et al.An intra-day rolling scheduling considering energy equity based on Gini coefficient[J]. Power system technology, 2020, 44(1): 340-347. [15] 王莹莹, 梅生伟, 刘锋. 混合电力系统合作博弈规划的分配策略研究[J]. 系统科学与数学, 2012, 32(4): 418-428. WANG Y Y, MEI S W, LIU F.Imputation schemes for the cooperative game in the hybrid system planning[J]. Journal of systems science and mathematical sciences, 2012, 32(4): 418-428. [16] HOU H, XU T, WU X X, et al.Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system[J]. Applied energy, 2020, 271: 115052. [17] 国家发展改革委. 国家发展改革委关于加强和改进发电运行调节管理的指导意见发改运行[2014]985号[Z]. 2014. National Development and Reform Commission. National Development and Reform Commission on strengthening and improving power generation guidance on operation regulation management FGY[2014] No.985[Z] [18] 戴嘉彤. 基于抽水蓄能的风光互补发电系统优化运行研究[D]. 兰州: 兰州交通大学, 2018. DAI J T.Study on optimal operation of wind and solar power generation system based on pumped storage[D]. Lanzhou: Lanzhou Jiaotong University, 2018. [19] 魏繁荣, 随权, 林湘宁, 等. 考虑可转移负荷效率的风/光/柴/蓄孤岛微网日运行能量控制优化策略[J]. 中国电机工程学报, 2018, 38(4): 1045-1053, 1281. WEI F R, SUI Q, LIN X N, et al.Optimized energy control strategy about daily operation of islanded microgrid with wind/photovoltaic/diesel/battery under consideration of transferable load efficiency[J]. Proceedings of the CSEE, 2018, 38(4): 1045-1053, 1281. [20] 王德意, 季东旭, 杨国清, 等. 市场环境下基于合作博弈的风-水-火电厂收益分配研究[J]. 电网与清洁能源, 2019, 35(5): 46-53. WANG D Y, JI D X, YANG G Q, et al.Research on wind-water-thermal power plant income distribution based on cooperative game in market environment[J]. Power system and clean energy, 2019, 35(5): 46-53. [21] 梅生伟, 王莹莹, 刘锋. 风-光-储混合电力系统的博弈论规划模型与分析[J]. 电力系统自动化, 2011, 35(20): 13-19. MEI S W, WANG Y Y, LIU F.A game theory based planning model and analysis for hybrid power system with wind generators-photovoltaic panels-storage batteris[J]. Automation of electric power systems, 2011, 35(20): 13-19. [22] 王德意, 季东旭, 杨国清, 等. 市场环境下基于合作博弈的风-水-火电厂收益分配研究[J]. 电网与清洁能源, 2019, 35(5): 46-53. WANG D Y, JI D X, YANG G Q, et al.Research on wind-water-thermal power plant income distribution based on cooperative game in market environment[J]. Power system and clean energy, 2019, 35(5): 46-53. [23] 杨国清, 付菁, 王德意, 等. 基于一主三从博弈的风——水——气区域电力系统调度研究[J]. 电网技术, 2018, 42(2): 495-503. YANG G Q, FU J, WANG D Y, et al.Study on one-leader three-follower game dispatching of regional power system with wind-hydro-gas power[J]. Power system technology, 2018, 42(2): 495-503. [24] 陈张宇, 刘东, 刘浩文, 等. 基于精细化需求响应的虚拟电厂优化调度[J]. 电网技术, 2021, 45(7): 2542-2550. CHEN Z Y, LIU D, LIU H W, et al.Optimal dispatching of virtual power plant based on refined demand response[J]. Power system technology, 2021, 45(7): 2542-2550. [25] 彭文昊, 陆俊, 冯勇军, 等. 计及用户参与不确定性的需求响应策略优化方法[J]. 电网技术, 2018, 42(5): 1588-1594. PENG W H, LU J, FENG Y J, et al.A demand response strategy optimization considering user participation uncertainty[J]. Power system technology, 2018, 42(5): 1588-1594. [26] 匡熠, 王秀丽, 王建学, 等. 基于Stackelberg博弈的虚拟电厂能源共享机制[J]. 电网技术, 2020, 44(12): 4556-4564. KUANG Y, WANG X L, WANG J X, et al.Power plant energy sharing mechanism based on Stackelberg game[J]. Power system technology, 2020, 44(12): 4556-4564. [27] 李笑竹, 王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188, 212. LI X Z, WANG W Q.Bi-level robust game optimal scheduling of regional comprehensive energy system[J]. Journal of Zhejiang University(engineering science), 2021, 55(1): 177-188, 212.