基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化

谭心, 朱振经, 孙国鑫, 刁力, 方桂花, 虞启辉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 94-103.

PDF(2268 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2268 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 94-103. DOI: 10.19912/j.0254-0096.tynxb.2021-0421

基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化

  • 谭心, 朱振经, 孙国鑫, 刁力, 方桂花, 虞启辉
作者信息 +

MULTI-OBJECTIVE OPTIMIZATION OF AIR-SOLOAR SOURCE HEAT PUMP COMBINED HEATING SYSTEM BASED ON FUZZY ANALYTIC HIERARCH PROCESS

  • Tan Xin, Zhu Zhenjing, Sun Guoxin, Diao Li, Fang Guihua, Yu Qihui
Author information +
文章历史 +

摘要

为减小太阳能空气源热泵供暖系统的综合成本和碳排放量,提高热泵运行效率及太阳能使用率,提出一种基于模糊层次分析法的多目标优化设计方法。采用TRNSYS,搭建复合供暖系统仿真模型,通过参数化分析选出7个系统参数作为优化变量,提出复合供暖系统综合评价指标,运用模糊层次分析法确定每个因素的权重并定义综合目标函数并通过正交试验法得到最终优化方案。通过仿真试验对比复合供暖系统优化前后的运行性能,验证了该优化方法的有效性。

Abstract

To reduce the comprehensive cost and carbon emissions of the solar air source heat pump heating system and to improve the operation efficiency of the heat pump and the utilization rate of solar energy, a multi-objective optimization design method based on a fuzzy analytic hierarchy process is proposed. First, establish a composite heating system simulation model using TRNSYS, select 7 system parameters as optimization variables through parametric analysis. Secondly, propose a comprehensive evaluation index for the composite heating system, use the fuzzy analytic hierarchy process to determine the weight of each factor, and define a comprehensive objective function. Finally, the final optimized scheme was obtained by the orthogonal experiment method. The effectiveness of the optimization method is verified by simulation test to compare the performance of the composite heating system before and after optimization.

关键词

太阳能 / 空气源热泵 / 层次分析法 / 多目标优化 / TRNSYS / 复合供暖系统

引用本文

导出引用
谭心, 朱振经, 孙国鑫, 刁力, 方桂花, 虞启辉. 基于模糊层次分析法的太阳能-空气源热泵复合供暖系统多目标优化[J]. 太阳能学报. 2022, 43(10): 94-103 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0421
Tan Xin, Zhu Zhenjing, Sun Guoxin, Diao Li, Fang Guihua, Yu Qihui. MULTI-OBJECTIVE OPTIMIZATION OF AIR-SOLOAR SOURCE HEAT PUMP COMBINED HEATING SYSTEM BASED ON FUZZY ANALYTIC HIERARCH PROCESS[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 94-103 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0421
中图分类号: TK51    TU83   

参考文献

[1] CHANG C, ZHU N, YANG K, et al.Data and analytics for heating energy consumption of residential buildings: the case of a severe cold climate region of China[J]. Energy and buildings, 2018, 172: 104-105.
[2] DIAO L Q, SUN Y J, CHEN Z J, et al.Modeling energy consumption in residential buildings: a bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation[J]. Energy and buildings, 2017, 147: 47-66.
[3] YUAN T H, ZHU N, SHI Y F, et al.Sample data selection method for improving the prediction accuracy of the heating energy consumption[J]. Energy and buildings, 2018, 158: 234-243.
[4] 李倩茹. 高原寒冷地区太阳能-空气源热泵复合供暖系统的应用研究[D]. 重庆: 重庆大学, 2018.
LI Q R.Study on the application of solar-air source combined heating system in plateau cold rsgions[D]. Chongqing: Chongqing University, 2018.
[5] HUANG B J, LEE C P.Long-term performance solar assisted heat pump water heater[J]. Renewable energy, 2004, 29(4): 633-639.
[6] RAN S Y, LI X T,XU W, et al.A solar-air hybrid source heat pump for space heating and domestic hot water[J]. Solar energy, 2020, 199: 347-359.
[7] XU W, LIU C Q, LI A G, et al.Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China[J]. Renewable energy, 2020, 146: 2124-2133.
[8] KAYGUSUZ K, AYHAN T.Experimental and theoretical investigation of combined solar heat pump system for residential heating[J]. Energy conversion and management, 1999, 40(13): 1377-1396.
[9] CARBONI C, MONTANARI R.Solar thermal systems: advantages in domestic integration[J]. Renewable energy, 2007, 33(16): 1364-1373.
[10] LU M L, ZHANG C, ZHANG D Y, et al.Operational optimization of district heating system based on an integrated model in TRNSYS[J]. Energy and buildings, 2020, 230: 110538.
[11] FIGAJ R, ZOLADEK M, GORYL W.Dynamic simulation and ene rgy economic analysis of a household hybrid ground-solar-wind system using TRNSYS software[J]. Energies, 2020, 13(14): 3523.
[12] BAMBARA J, ATHIENITIS A K.Energy and economic analysis for greenhouse ground insulation design[J]. Energies, 2018, 11(11): 3218.
[13] 张文彬, 杜志敏, 晋欣桥, 等. MATLAB和TRNSYS实时动态仿真技术[C]//上海市制冷学会2009年学术年会论文集, 2009: 4.
ZHANG W B, DU Z M, JIN X Q, et al.MATLAB-TRNSYS real-time dynamic simulation technology[C]//Proceedings of the 2009 Annual Conference of Shanghai Institute of Refrigeration, Shanghai, 2009: 4.
[14] SUDHAKAR K, JENKINS M S, MANGAL S, et al.Modelling of a solar desiccant cooling system using a TRNSYS-MATLAB co-simulator: a review[J]. Journal of building engineering, 2019, 24:100749.
[15] NTSALUBA S, ZHU B, XIA X H.Optimal flow control of a forced circulation solar water heating system with energy storage units and connecting pipes[J]. Renewable energy, 2016, 89: 108-124.
[16] GOMARIZ F P.An analysis of low flow for solar thermal system for water heating[J]. Solar energy, 2019, 179: 67-73.
[17] HAWLADER M N A, CHOU S K, ULLAH M Z. The performance of a solar assisted heat pump water heating system[J]. Applied thermal engineering, 2001, 21(10): 1049-1065.
[18] 曾乃晖, 袁艳平, 孙亮亮, 等. 基于TRNSYS的空气源热泵辅助太阳能热水系统优化研究[J]. 太阳能学报, 2018, 39(5): 1245-1254.
ZENG N H, YUAN Y P, SUN L L, et al.Optimization on Air source heat pump assisted solar water heating system based on TRNSYS[J]. Acta energiae solaris sinica, 2018, 39(5): 1245-1254.
[19] 郭金玉, 张忠彬, 孙庆云. 层次分析法的研究与应用[J]. 中国安全科学学报, 2008, 18(5): 148-153.
GUO J Y, ZHANG Z B, SUN Q Y.Study and applications of analytic hierarchy process[J]. China safety science journal, 2008, 18(5): 148-153.
[20] KUBLER S, ROBERT J, DERIGENT W, et al.A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications[J]. Expert systems with applications, 2016, 65: 398-422.
[21] CHEN T.Enhancing the efciency and accuracy of existing FAHP decision making methods[J]. EURO journal on decision processes, 2020, 8: 1-28.
[22] ZHENG G, ZHU N, TIAN Z, et al.Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments[J]. Safety science, 2011, 50(2): 228-239.
[23] CHANG S J, HSU C, LIN C T.Using FAHP and CBR to evaluate the intention of adoption of internet banking service: the example of web ATM[J]. Journal of intelligent & fuzzy systems, 2020, 39(3): 2869-2879.
[24] JEE H K.Prioritization for water storage increase of agricultural reservoir using fahp method[J]. Journal of Korea water resources association, 2013, 46(2): 171-182.
[25] KHORSAND R, GHOBAEI-ARANI M, RAMEZAN-POUR M.FAHP approach for autonomic resource provisioning of multitier applications in cloud computing environments[J]. Software: practice and experience, 2018, 48(12): 2147-2173.
[26] 李慧. 建筑节能经济激励政策及相关问题研究[D]. 西安: 西安建筑科技大学, 2008.
Li H.Research of economic incentive Policies of building energy efficiency and the relevant problems[D]. Xi’an: Xi’an University of Architecture and Technology, 2008.
[27] 孙陈俊妍, 周根, 葛宇佳, 等. BIM技术在可持续绿色建筑全寿命周期中的应用研究[J]. 项目管理技术, 2017, 15(2): 65-69.
SUN C J Y, ZHOU G, GE Y J, et al. Research on the application of BIM technology in the life cycle of sustainable green buildings[J]. Project management technology, 2017, 15(2): 65-69.

基金

国家自然科学基金(61765012); 内蒙古自然科学基金(2019MS05008); 内蒙古自治区科技创新指导项目(2017CXYD-2、 KCBJ2018031); 内蒙古自治区高等学校科学研究项目(NJZY21393)

PDF(2268 KB)

Accesses

Citation

Detail

段落导航
相关文章

/