基于布谷鸟算法的光伏MPPT改进

葛传九, 武鹏, 董祥祥, 金俊喆

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 59-64.

PDF(2953 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2953 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 59-64. DOI: 10.19912/j.0254-0096.tynxb.2021-0423

基于布谷鸟算法的光伏MPPT改进

  • 葛传九, 武鹏, 董祥祥, 金俊喆
作者信息 +

IMPROVED PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING BASED ON CUCKOO SEARCH ALGORITHM

  • Ge Chuanjiu, Wu Peng, Dong Xiangxiang, Jin Junzhe
Author information +
文章历史 +

摘要

为减小光伏阵列在存在局部阴影时光伏系统输出功率的损失,提高最大功率点追踪(MPPT)的速度和准确性,提出基于布谷鸟(CS)算法和扰动观察法(P&O)相结合的MPPT控制方法(ICS-P&O)。对CS算法中的种群进行分组,在随机游走阶段为2个种群设置不同的更新策略,在偏好游走阶段加入信息共享策略来辅助更新,从而加快算法的收敛,提升收敛精度,而后利用小步长P&O算法进一步提高后期的收敛精度。仿真结果表明,所提算法在不同的外界环境下追踪速度和追踪精度均得到有效提升。

Abstract

To reduce the power loss of the photovoltaic system when the photovoltaic array has partial shadows and improve the accuracy and speed of the maximum power point tracking(MPPT), an MPPT control method(ICS-P&O) is proposed based on the Cuckoo Search(CS) algorithm and P&O algorithm. Group the populations in the CS algorithm,set different update strategies for the two populations in the random walk phase and add information sharing strategies to assist in the update during the biased walk phase to speed up the convergence of the algorithm and improve the convergence accuracy,then use small steps P&O method to improves the convergence accuracy in the later stage. Results show that the proposed method has better global search performance,faster tracking speed and higher tracking accuracy in different external environments.

关键词

最大功率点追踪 / 光伏系统 / 扰动观察法 / 布谷鸟算法 / 局部阴影

引用本文

导出引用
葛传九, 武鹏, 董祥祥, 金俊喆. 基于布谷鸟算法的光伏MPPT改进[J]. 太阳能学报. 2022, 43(10): 59-64 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0423
Ge Chuanjiu, Wu Peng, Dong Xiangxiang, Jin Junzhe. IMPROVED PHOTOVOLTAIC MAXIMUM POWER POINT TRACKING BASED ON CUCKOO SEARCH ALGORITHM[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 59-64 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0423
中图分类号: TM615   

参考文献

[1] 戚军, 翁国庆, 章旌红. 光伏阵列多峰最大功率点分布特点研究[J]. 电力自动化设备, 2014, 34(3): 132-137,143.
QI J, WENG G Q, ZHANG J H.Multi-peak MPP distribution of photovoltaic array[J]. Electric power automation equipment, 2014, 34(3): 132-137, 143.
[2] ISHAQUE K, SALAM Z, TAHERI H, et al.Modeling and simulation of photovoltaic(PV) system during partial shading based on a two-diode model[J]. Simulation modelling practice and theory, 2011, 19(7): 1613-1626.
[3] MOHANTY S, SUBUDHI B, RAY P K.A grey wolf-assisted perturb & observe MPPT algorithm for a PV system[J]. IEEE transactions on energy conversion, 2017, 32(1): 340-347.
[4] MOTAHHIR S, CHALH A, ELGHZIZAL A, et al.Development of a low-cost PV system using an improved INC algorithm and a PV panel Proteus model[J]. Journal of cleaner production, 2018, 204: 355-365.
[5] SUNDARESWARAN K, PEDDAPATI S, PALANI S.MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies[J]. IEEE transactions on energy conversion, 2014, 29(2): 463-472.
[6] 盛四清, 陈玉良, 张晶晶. 基于差分进化人工蜂群算法的光伏最大功率跟踪策略研究[J]. 电力系统保护与控制, 2018, 46(11): 23-29.
SHENG S Q, CHEN Y L, ZHANG J J.Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system[J]. Power system protection and control, 2018, 46(11): 23-29.
[7] 赵帅旗, 肖辉, 刘忠兵, 等. 基于BSO的局部阴影下光伏最大功率点追踪[J]. 电力系统及其自动化学报, 2020, 32(6): 74-79, 100.
ZHAO S Q, XIAO H, LIU Z B, et al.Photovoltaic maximum power point tracking based on BSO algorithm under partial shading condition[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 74-79, 100.
[8] BOUSELHAM L, HAJJI M, HAJJI B, et al.A new MPPT-based ANN for photovoltaic system under partial shading conditions[J]. Energy procedia, 2017, 111: 924-933.
[9] 徐伟, 郑建立. 基于BP神经网络的最大功率跟踪研究[J]. 电工技术, 2020(12): 62-65.
XU W, ZHENG J L.Research on maximum power tracking based on BP neural network[J]. Electric engineering, 2020(12): 62-65.
[10] TANG S Q, SUN Y Z, CHEN Y J, et al.An enhanced MPPT method combining fractional-order and fuzzy logic control[J]. IEEE journal of photovoltaics, 2017, 7(2): 640-650.
[11] 朱作滨, 黄绍平, 李振兴. 基于模糊理论占空比扰动法光伏发电MPPT的研究[J]. 控制工程, 2020, 27(7): 1299-1304.
ZHU Z B, HUANG S P, LI Z X.Research on photovoltaic power generation MPPT based on fuzzy theory duty cycle disturbance method[J]. Control engineering of China, 2020, 27(7): 1299-1304.
[12] HARRAG A, MESSALTI S.Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller[J]. Renewable and sustainable energy reviews, 2015, 49: 1247-1260.
[13] 刘宜罡, 邹应全, 张晓强, 等. 基于差分进化的光伏MPPT算法改进[J]. 太阳能学报, 2020, 41(6): 264-271.
LIU Y G, ZOU Y Q, ZHANG X Q, et al.An improved photovoltaic MPPT algorithm based on differential evolution algorithm[J]. Acta energiae solaris sinica, 2020, 41(6): 264-271.
[14] 葛双冶, 杨凌帆, 刘倩, 等. 基于改进CPSO的动态阴影环境下光伏MPPT仿真研究[J]. 电力系统保护与控制, 2019, 47(6): 151-157.
GE S Y, YANG L F, LIU Q, et al.Research on photovoltaic MPPT simulation under dynamic shadow environment based on modified CPSO[J]. Power system protection and control, 2019, 47(6): 151-157.
[15] HARRAG A, SABIR M.PSO-based SMC variable step size P&O MPPT controller for PV systems under fast changing atmospheric conditions[J]. International journal of numerical modelling: electronic networks, devices and fields, 2019, 32: e2603.

基金

上海市自然科学基金(18ZR1416700)

PDF(2953 KB)

Accesses

Citation

Detail

段落导航
相关文章

/