[1] 胡帅, 向月, 沈晓东, 等. 计及气象因素和风速空间相关性的风电功率预测模型[J]. 电力系统自动化, 2021, 45(7): 28-36. HU S, XIANG Y, SHEN X D, et al.Wind power prediction model considering Meteorological factor and spatial correlation of wind speed[J]. Automation of electric power systems, 2021, 45(7): 28-36. [2] 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7):352-358. ZhAO Z, WANG X S. Ultra-short-term multi-step wind power prediction based on ceemd and improved time series model[J]. Acta energiae solaris sinica, 2020, 41(7): 352-358. [3] MA Z R, CHEN H W, WANG J J, et al.Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction[J]. Energy conversion and management, 2020, 205: 112345. [4] PENG Y J, LI Y, LEE K Y, et al.Coordinated control strategy of PMSG and cascaded H-Bridge STATCOM in dispersed wind farm for suppressing unbalanced grid voltage[J]. IEEE transactions on sustainable energy, 2021, 12(1): 349-359. [5] 段偲默, 苗世洪, 李力行, 等. 计及预测误差动态相关性的多风电场联合出力不确定性模型[J]. 电力系统自动化, 2019, 43(22): 31-37. DUAN S M, MIAO S H, LI L X, et al.Uncertainty model of combined output for multiple wind farms considering dynamic correlation of prediction errors[J]. Automation of electric power systems, 2019, 43(22): 31-37. [6] 姚万业, 黄璞, 姚吉行, 等. 一种基于深度学习FRS-CLSTM风速预测模型[J].太阳能学报, 2020, 41(9): 324-330. YAO W Y, HUANG P, YAO J X, et al.A FRS-CLSTM wind speed prediction model based on deep learning[J]. Acta energiae solaris sinica, 2020, 41(9): 324-330. [7] 石东源, 蔡德福, 陈金富, 等. 计及输入变量相关性的半不变量法概率潮流计算[J]. 中国电机工程学报, 2012, 32(28): 104-113, 12. SHI D Y, CAI D F, CHEN J F, et al.Probabilistic load flow calculation based on cumulant method considering correlation between input variables[J]. Proceedings of the CSEE, 2012, 32(28): 104-113, 12. [8] SHARMA R, SHIKHOLA T, KOHLI J K.Modified fuzzy Q-learning based wind speed prediction[J]. Journal of wind engineering and industrial aerodynamics, 2020, 206: 104361. [9] ZHANG G, LI Z X, ZHANG K, et al.Multi-objective interval prediction of wind power based on conditional copula function[J]. Journal of modern power systems and clean energy, 2019, 7(4): 802-812. [10] 沈小军, 周冲成, 吕洪. 基于运行数据的风电机组间风速相关性统计分析[J]. 电工技术学报, 2017, 32(16): 265-274. SHEN X J, ZHOU C C, LYU H.Statistical analysis of wind speed correlation between wind turbines based on operational data[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 265-274. [11] ZHU Q M, CHEN J F, SHI D Y, et al.Learning temporal and spatial correlations jointly: a unified framework for wind speed prediction[J]. IEEE transactions on sustainable energy, 2020, 11(1): 509-523. [12] CHEN Y, ZHANG S, ZHANG W Y, et al.Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting[J]. Energy conversion and management, 2019, 185: 783-799. [13] 吴晓升, 江岳文. 基于去趋势互相关分析法的光照,温度和风速互相关性分析[J]. 中国电力, 2020, 53(6): 101-110, 127. WU X S, JIANG Y W.A cross-correlation analysis of irradiation, temperature and wind speed based on detrended cross-correlation method[J]. Electric power, 2020, 53(6): 101-110, 127. [14] ZENG M, LI J H, MENG Q H, et al.Temporal-spatial cross-correlation analysis of non-stationary near-surface wind speed time series[J]. Journal of Central South University, 2017, 24(3): 692-698. [15] SUN C, ZHAO H B, XIE M, et al.Fuzzy copula model for wind speed correlation and its application in wind curtailment evaluation[J]. Renewable energy, 2016, 93:68-76. [16] WANG Y K, MA H Q, Wang D, et al.A new method for wind speed forecasting based on Copula theory[J]. Environmental research, 2018, 160: 365-371. [17] 卢锦玲, 於慧敏. 基于混合Copula的风光功率相关结构分析[J]. 太阳能学报, 2017, 38(11): 3188-3194. LU J L, YU H M.Dependence structure analysis of wind and PV power based on hybrid Copula[J]. Acta energiae solaris sinica, 2017, 38(11): 3188-3194. [18] PHILIPPE W P J, ZHANG S, EFTEKHARNEIAD S, et al. Mixed Copula-Based uncertainty modeling of hourly wind farm production for power system operational planning studies[J]. IEEE access, 2020, 8:138569-138583. [19] NELSEN R B.An introduction to Copulas[M]. New York: Springer, 1999: 8-12. [20] DEMPSTER A P, LAIRD N M, RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39: 11-38. [21] 郁琛, 薛禹胜, 文福拴, 等. 风电功率预测误差的风险评估[J]. 电力系统自动化, 2015, 39(7): 52-58. YU C, XUE Y S, WEN F S, et al.Risk assessment of wind power prediction[J]. Automation of electric power systems, 2015, 39(7): 52-58. [22] 孙斌, 姚海涛, 刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109. SUN B, YAO H T, LIU T.Short-term Wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109. |