为提高不规则海况下直驱式波浪发电系统的功率捕获能力,通过建立水动力模型及直线电机模型,分析等效模拟电路共振状态,构造最优功率捕获条件;针对波浪工作环境强噪声干扰问题,采用Rife法获取波浪主导激励分量,设置等效阻尼系数,计算q轴最优期望电流跟踪值;通过设计径向基函数(RBF)神经网络PI控制,提高等效控制电流信号的跟踪精度,改善系统动态性能。仿真结果表明,所提策略对含强噪声干扰的波浪信号主频段幅值和频率预估精度高,跟踪期望电流效果好,鲁棒性强,系统输出功率优化效果显著。
Abstract
In order to improve the power capture efficiency of the direct-drive wave power generation system under irregular sea conditions, optimal power capture condition was constructed by establishing the hydrodynamic model and linear motor model as well as analyzing the resonance state of the analog equivalent circuit. Aiming at the problem of strong noise interference in the wave environment, the Rife algorithm was used to obtain the dominant wave excitation component, which contributes to set the equivalent damping coefficient and calculates the q-axis optimal desired current tracking value. With designing the RBF neural network PI control algorithm,both the tracking accuracy of the equivalent control current signal and the dynamic performance of the system are improved. The simulation results show that the proposed strategy has high prediction accuracy for the amplitude and frequency of the main frequency band wave signals with strong noise, good tracking effect on the expected current value, strong robustness and significant optimization effect of the output power.
关键词
波浪能 /
最大功率点跟踪 /
永磁直线同步电机 /
Rife法 /
RBF神经网络
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LUAN Z X,HE G H, ZHANG Z G, et al.Study on the optimal wave energy absorption power of a float in waves[J]. Journal of marine science and engineering, 2019, 7(8): 269.
[2] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J].中国电机工程学报, 2016, 36(19): 5103-5110.
LIU Z Y.Research of global clean energy resource and power grid interconnection[J]. Proceedings of the CSEE, 2016, 36(19): 5103-5110.
[3] TEDESCHI E, MOLINAS M.Impact of control strategies on the rating of electric power take off for wave energy conversion[C]//IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010: 2406-2411.
[4] WU F, ZHANG X P, JU P, et al.Optimal control for AWS-based wave energy conversion system[J]. IEEE transactions on power systems, 2009, 24(4): 1747-1755.
[5] 刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58.
LIU H B, PENG A W, ZHAO L Z.Summary of power control methods for wave power generation system[J]. Advanced technology of electrical engineering and energy, 2020, 39(5): 49-58.
[6] 陈海峰, 杨俊华, 沈辉, 等. 基于混沌飞蛾捕焰算法的波浪发电系统最大功率跟踪[J]. 可再生能源, 2019, 37(11): 1697-1703.
CHEN H F, YANG J H, SHEN H, et al.Maximum power tracking of wave power generation system based on chaotic moth capture algorithm[J]. Renewable energy resources, 2019, 37(11): 1697-1703.
[7] 林巧梅, 杨俊华, 蔡浩然, 等. 基于滑模控制的直驱式波浪发电系统MPPT控制策略[J]. 电测与仪表, 2018, 55(10): 90-95.
LIN Q M, YANG J H, CAI H R, et al.MPPT algorithm for direct-drive wave power generation system based on sliding mode control[J]. Electrical measurement & instrumentation, 2018, 55(10): 90-95.
[8] BARAMBONES O, DURANA J M G D. Sliding mode control for power output maximization in a wave energy systems[J]. Energy procedia, 2015, 75: 265-270.
[9] RIFE D, BOORSTYN R.Single tone parameter estimation from discrete-time observations[J]. IEEE transactions on information theory, 1974, 20(5): 591-598.
[10] 韩明文. 永磁同步直线电机神经网络PID控制系统的研究[D]. 上海: 华东理工大学, 2013.
HAN M W.Research on permanent magent synchronous linear motor based on neural network pid control[D]. Shanghai:East China University of Science and Technology, 2013.
[11] 王欣, 陈金林, 秦斌, 等. 基于BP-PID的风电机组独立变桨距控制研究[J]. 电气传动, 2018, 48(11): 48-52.
WANG X, CHEN J L, QIN B, et al.Research on individual pi pitch control of wind turbine based on BP-PID[J]. Electric drive, 2018, 48(11): 48-52.
[12] PAN L,FENG H,WANG H H, et al.Variable pitch control strategy of wind power generation based on BPNN-PID algorithm[C]//2019 IEEE Sustainable Power and Energy Conference(iSPEC), Beijing, China, 2019.
[13] 王哲, 田艳丰, 陈雷, 等. 基于RBF神经网络的桨距角控制策略[J]. 太阳能学报, 2011, 32(5): 623-626.
WANG Z, TIAN Y F, CHEN L, et al.Pitch angle control strategt based on RBF neural network[J]. Acta energiae solaris sinica, 2011, 32(5): 623-626.
[14] YANG J H, HUANG B Z, SHEN H, et al.EKF based fuzzy PI controlled speed sensorless power optimal control of a direct drive power system[J]. IEEE access, 2019, 7: 61610-61619.
[15] 蔡浩然, 杨俊华, 杨金明. 直驱型波浪发电系统的混沌运动及反步滑模变控制[J]. 电测与仪表, 2018, 55(20): 108-113, 121.
CAI H R, YANG J H, YANG J M.Chaos motion and back-stepping sliding mode control of the direct-drive wave power generation system[J]. Electrical measurement & instrumentation, 2018, 55(20): 108-113, 121.
[16] MAREI M I, MOKHTAR M, EL-SATTAR A A. MPPT strategy based on speed control for AWS-based wave energy conversion system[J]. Renewable energy, 2015, 83: 305-317.
基金
国家自然科学基金(51370265); 广东省科技计划(2016B090912006); 广东省自然科学基金(2018A030313010)