基于惯性网络的兆瓦级风电叶片形变测量算法研究

张华强, 刘林, 秦昌礼, 刘卫生, 苏庆华, 陈雨

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 186-191.

PDF(1760 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1760 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 186-191. DOI: 10.19912/j.0254-0096.tynxb.2021-0442

基于惯性网络的兆瓦级风电叶片形变测量算法研究

  • 张华强1, 刘林1, 秦昌礼1, 刘卫生2, 苏庆华3, 陈雨4
作者信息 +

RESEARCH ON DEFORMATION MEASUREMENT ALGORITHM OF MEGAWATT WIND TURBINE BLADE BASED ON INERTIAL NETWORK

  • Zhang Huaqiang1, Liu Lin1, Qin Changli1, Liu Weisheng2, Su Qinghua3, Chen Yu4
Author information +
文章历史 +

摘要

针对目前风电叶片形变过程中挠曲度测量误差较大的问题,提出一种基于惯性网络的相对运动监测算法。首先根据应力分析对叶片建立主从式惯性网络,然后推导出主子节点间的相对运动解算方法并建立相对导航误差模型,设计相对导航误差估计滤波器,通过误差反馈保证子节点的位姿解算精度;其次构建联邦式的相对惯性导航误差估计滤波器进行主子节点的数据融合,提高风电叶片的形变估计精度及系统整体的容错性;最后对某型风电叶片进行静力加载试验,试验结果表明:该算法可准确测量出叶片上各节点在三维空间的位移曲线,3个子节点在挥舞方向的平均相对误差仅为0.92%、1.18%、1.07%。该算法可实时监测风电叶片的位姿状态,在叶片检测及风力机日常运行的安全监测上具有较好的理论研究意义与工程应用价值。

Abstract

To deal with the large flexure measurement error in the deformation process of wind turbine blade, a relative motion monitoring algorithm based on inertial network is proposed. Firstly, the master-slave inertial network is established according to the stress analysis of wind turbine blade, then the calculating method for the movement of the master IMU relative to the slave IMU is derived and the relative navigation error model is established. The relative navigation error estimation filter is designed to ensure the accuracy of the posture solution of each slave nodes through the error feedback. Secondly, a federated relative inertial navigation error estimation filter is constructed for data fusion of master node and slave nodes, which improves the deformation estimation accuracy of the integral wind turbine blade and the fault tolerance of the entire system. Finally, a static loading test is carried out with a certain type of wind turbine blade. The test results show that algorithm can accurately measure the displacement curve of each node on the wind turbine blade, the mean relative errors(MREs) of the three slave nodes in wave direction are 0.92%, 1.18% and 1.07%, respectively. This algorithm can monitor the position and attitude of wind turbine blade in real time, and it has good theoretical research significance and engineering application value in wind turbine blade detection and wind turbine safety monitoring.

关键词

风电叶片 / 形变 / 惯性网络 / 相对运动 / 数据融合

Key words

wind turbine blades / deformation / inertial network / relative motion / data fusion

引用本文

导出引用
张华强, 刘林, 秦昌礼, 刘卫生, 苏庆华, 陈雨. 基于惯性网络的兆瓦级风电叶片形变测量算法研究[J]. 太阳能学报. 2022, 43(10): 186-191 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0442
Zhang Huaqiang, Liu Lin, Qin Changli, Liu Weisheng, Su Qinghua, Chen Yu. RESEARCH ON DEFORMATION MEASUREMENT ALGORITHM OF MEGAWATT WIND TURBINE BLADE BASED ON INERTIAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 186-191 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0442
中图分类号: TH137   

参考文献

[1] 李晓红. “十四五”时期风电将是能源结构转型的重要支撑[N]. 中国经济时报, 2020.
LI X H.Wind power will be an important support for the transformation of energy structure during the 14th Five-Year Plan period[N]. China Economic Times, 2020.
[2] 吴国境, 王健, 张永, 等. 自然激励下风电叶片损伤的红外热像检测研究[J]. 太阳能学报, 2020, 41(9): 353-358.
WU G J, WANG J, ZHANG Y, et al.Research on infrared thermal image detection of wind turbine blade damage under natural excitation[J]. Acta energiae solaris sinica, 2020, 41(9): 353-358.
[3] 王超, 戴巨川, 杨鑫, 等. 基于“应变-载荷”模型的大型风电机组叶片载荷识别研究[J]. 太阳能学报, 2019, 40(5): 1423-1432.
WANG C, DAI J C, YANG X, et al.Research on blade load identification of large-scale wind turbines based on “stress-load” model[J]. Acta energiae solaris sinica, 2019, 40(5): 1423-1432.
[4] FITZGERALD B, ARRIGAN J, BASU B.Damage detection in wind turbine blades using time-frequency analysis of vibration signals[C]//The 2010 International Joint Conference on Neural Networks(IJCNN), Barcelona, Spain, 2010, 10: 1-5.
[5] HAMEED Z, HONG Y S, CHO Y M, et al.Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and sustainable energy reviews, 2009, 13(1): 1-39.
[6] 张磊安, 魏修亭, 胡俊, 等. 静力载荷作用下的风电叶片空间轨迹精确测量模型[J]. 太阳能学报, 2019, 40(4): 1150-1154.
ZHANG L A, WEI X T, HU J, et al.Loading coordination control algorithm of full-scale static test wind turbine blade[J]. Acta energiae solaris sinica, 2019, 40(4): 1150-1154.
[7] ZHU P Y, WU J,HUANG M, et al.Alternating strain response of fibre bragg grating sensors embedded into carbon fibre composites for wind blade health monitoring[C]//Seventh European Workshop on Optical Fibre Sensors(EWOFS 2019), Limassol, Cyprus, 2019.
[8] 苑云, 张小虎, 朱肇昆, 等. 大型风力发电叶片变形的摄像测量方法研究[J]. 计算机应用, 2012, 32(S1): 114-117.
YUAN Y, ZHANG X H, ZHU Z K, et al.Deformation measurement oflarge-scale wind turbine blades using videometrics[J]. Journal of computer applications, 2012, 32(S1): 114-117.
[9] 豆红尧, 周华飞, 秦良忠, 等. 风电叶片全场三维变形测试及分析[J]. 太阳能学报, 2015, 36(9): 2257-2262.
DOU H Y, ZHOU H F, QIN L Z, et al.Test and analysis of full-field 3D deformation for a wind turbine blade[J]. Acta energiae solaris sinica, 2015, 36(9): 2257-2262.
[10] CHOI S W, FARINHOLT K M, TAYLOR S G, et al.Damage identification of wind turbine blades using piezoelectric transducers[J]. Shock and vibration, 2014, 2014: 1-9.
[11] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理 [M]. 西安: 西北工业大学出版社, 2015: 191-196.
QIN Y Y, ZHANG H Y, WANG S H.Kalman filter and the principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 2015: 191-196.
[12] 苏振超. 材料力学[M]. 北京: 清华大学出版社, 2016: 171-175.
SU Z C.Mechanics of materials[M]. Beijing: Tsinghua University Press, 2016: 171-175.

基金

国家自然科学基金青年基金(61803035)

PDF(1760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/