NaCl-MgCl2-CaCl2相图计算方法研究

李元媛, 张翔, 苗智昶

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 395-399.

PDF(1593 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1593 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 395-399. DOI: 10.19912/j.0254-0096.tynxb.2021-0454

NaCl-MgCl2-CaCl2相图计算方法研究

  • 李元媛, 张翔, 苗智昶
作者信息 +

RESEARCH ON CALCULATION METHODS OF NaCl-MgCl2-CaCl2 PHASE DIAGRAM

  • Li Yuanyuan, Zhang Xiang, Miao Zhichang
Author information +
文章历史 +

摘要

为满足规模化太阳能热发电中对传热蓄热的要求,针对储能材料开展探究。以熔融盐热物性及经济性作为筛选条件,选定来源广泛、价格低廉、工作温度范围宽、黏度低、相变潜热大的NaCl、MgCl2和CaCl2三元熔盐体系开展深入研究。应用修正的准化学溶液模型,在子二元系基础上推导计算三元混合熔盐NaCl-MgCl2-CaCl2相图。结果表明,该熔盐混合物共晶点温度为412.45 ℃,NaCl、MgCl2和CaCl2的摩尔分数分别为50.99%、22.78%和26.23%,与已有文献数据相比,误差在3%以内,验证了方法的准确性,为构建熔盐氯化物相图数据库奠定了部分基础。

Abstract

Energy storage materials have been widely studied and used to meet heat transfer requirements and storage in large-scale solar thermal power generation. Taking the thermal physical properties and economy of molten salt as screening conditions, ternary molten salt systems of NaCl, MgCl2, and CaCl2 with wide sources, low price, wide operating temperature range, low viscosity, and large latent heat of phase transition were selected for in-depth study. Based on the sub-binary system., the modified quasi-chemical solution model was used to calculate the phase diagram of ternary mixed molten salt NaCl-MgCl2-CaCl2. The calculated results show that the eutectic point temperature of the molten salt mixture is 412.45 ℃, and the molar fractions of NaCl, MgCl2, and CaCl2 is 50.99%, 22.78%, and 26.23%, respectively. Compared with the existing literature data, the error is less than 3%, which verifies the accuracy of the method. It lays a partial foundation for the construction of a phase diagram database of molten salt chloride.

关键词

太阳能热发电 / 熔盐相平衡 / 三元相图 / 修正的准化学溶液模型

引用本文

导出引用
李元媛, 张翔, 苗智昶. NaCl-MgCl2-CaCl2相图计算方法研究[J]. 太阳能学报. 2022, 43(10): 395-399 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0454
Li Yuanyuan, Zhang Xiang, Miao Zhichang. RESEARCH ON CALCULATION METHODS OF NaCl-MgCl2-CaCl2 PHASE DIAGRAM[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 395-399 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0454
中图分类号: TK512   

参考文献

[1] 徐海卫, 常春, 余强. 太阳能热发电系统中熔融盐技术的研究与应用[J]. 热能动力工程, 2015, 30(5): 659-665, 816.
XU H W, CHANG C, YU Q.Study and applications of the melted salt technologies in concentrating solar power generation systems[J]. Journal of engineering for thermal energy and power, 2015, 30(5): 659-665, 816.
[2] 杨敏林, 杨晓西, 林汝谋, 等. 太阳能热发电技术与系统[J]. 热能动力工程, 2008, 23(3): 221-228, 325.
YANG M L,YANG X X, LIN R M, et al.Solar energy-based thermal power generation technologies and their systems[J]. Journal of engineering for thermal energy and power, 2008, 23(3): 221-228, 325.
[3] 宋明, 魏小兰, 彭强, 等. 新型三元氯化物熔盐材料的设计及热稳定性研究[J]. 工程热物理学报, 2015, 36(2): 393-396.
SONG M, WEI X L, PENG Q, et al.Thermal stability of a new designed ternary chloride molten salt material[J]. Journal of engineering thermophysics, 2015, 36(2): 393-396.
[4] 赵倩, 王俊勃, 宋宇宽, 等. 熔融盐高储热材料的研究进展[J]. 无机盐工业, 2014, 46(11): 5-8.
ZHAO Q, WANG J B, SONG Y K, et al.Research progress in high heat storage material of molten salt[J]. Inorganic chemicals industry, 2014, 46(11): 5-8.
[5] 徐芳, 王军涛, 来梦泽, 等. MNO3-Ca(NO3)2(M=Li,Na,K)二元相图的热力学优化[J]. 有色金属(冶炼部分), 2015(4): 8-12.
XU F, WANG J T, LAI M Z, et al.Thermodynamic optimization of MNO3-Ca(NO3)2(M=Li,Na,K) binary system[J]. Nonferrous metals(extractive metallurgy), 2015(4): 8-12.
[6] 涂易, 王文磊, 王军涛, 等. 高温熔盐储能材料的模型计算方法研究[J]. 材料导报, 2014, 28(6): 136-140,148.
TU Y, WANG W L, WANG J T, et al.Study on model calculation methods of high temperature fused salt energy storage material[J]. Materials reports, 2014, 28(6): 136-140,148.
[7] PELTON A D, DEGTEROV S A, ERIKSSON G, et al.The modified quasi-chemical model I-binary solutions[J]. Metallurgical and materials transactions B: process metallurgy and materials processing science, 2000, 31(4): 651-659.
[8] CHARTRAND P, PELTON A D.On the choice of "geometric" thermodynamic models[J]. Journal of phase equilibria, 2000, 21(2): 141-147.
[9] PELTON A D, CHARTRAND P.The modified quasi- chemical model: Part II. multicomponent solutions[J]. Metallurgical and materials transactions A: physical metallurgy and materials science, 2001, 32(6): 1355-1360.
[10] CHARTRAND P, PELTON A D.Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi- chemical model[J]. Metallurgical and materials transactions A: physical metallurgy and materials science, 2001, 32(6): 1355-1360.
[11] 乔芝郁, 杜爱玲, 莫雯静, 等. NaCl-CaCl2二元系的研究[J]. 稀有金属, 1989, 13(1): 67-70.
QIAO Z Y, DU A L, MO W J, et al.Research on NaCl-CaCl2 binary system[J]. Chinese journal of rare metals, 1989, 13(1): 67-70.
[12] GEORGE S P, HAYLEY F.The MgCl2-KCl-CaCl2 phase diagram[J]. Thermochimica acta, 1993, 217: 227-284.
[13] WEI X L, SONG M, WANG W, et al.Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage[J]. Applied energy, 2015, 156: 306-310.
[14] ROBELIN C, CHARTRAND P.Thermodynamic evaluation and optimization of the(NaCl+KCl+MgCl2+CaCl2+ZnCl2) system[J]. Journal of chemical thermodynamics, 2011, 43(3): 377-391.

基金

国家自然科学基金(51876057)

PDF(1593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/