神经网络短期光伏发电预测的应用研究进展

贾凌云, 云斯宁, 赵泽妮, 李红莲, 王赏玉, 杨柳

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 88-97.

PDF(1612 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1612 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 88-97. DOI: 10.19912/j.0254-0096.tynxb.2021-0501

神经网络短期光伏发电预测的应用研究进展

  • 贾凌云1, 云斯宁1, 赵泽妮1, 李红莲2, 王赏玉3, 杨柳3
作者信息 +

RECENT PROGRESS OF SHORT-TERM FORECASTING OF PHOTOVOLTAIC GENERATION BASED ON ARTIFICIAL NEURAL NETWORKS

  • Jia Lingyun1, Yun Sining1, Zhao Zeni1, Li Honglian2, Wang Shangyu3, Yang Liu3
Author information +
文章历史 +

摘要

准确的太阳能发电功率短期预测是保证电力调度和大规模光伏并网的关键。该文对近年来光伏发电功率短期预测研究进展进行综述,并对影响光伏发电功率的各种气象因素进行相关性分析。针对用于光伏发电短期功率预测的人工神经网络模型和深度学习模型进行总结和评述。太阳辐照度是影响预测模型精度的主要气象参数。在光伏发电功率短期预测中,神经网络及其组合模型均表现出较好的预测精度,但组合模型整体上优于单一预测模型。

Abstract

Accurate short-term forecasting of photovoltaic generation is crucial to ensure power dispatching and large-scale photovoltaic grid connection. This review paper presents an extensive review on recent progress in the short-term forecasting of solar power generation. The correlation analysis of various meteorological factors affecting on solar power generation is implemented. The artificial neural network models and deep learning models for solar power forecasting are summarized and reviewed. The solar irradiance is the main meteorological parameter affecting the accuracy of forecasting models. In the short-term forecasting of solar power generation, both neural network models and hybrid models demonstrate a satisfactory prediction accuracy, whereas the hybrid models perform better than the single forecasting models in the prediction accuracy.

关键词

光伏发电 / 神经网络 / 预测 / 深度学习 / 相关性

Key words

photovoltaic power / neural networks / forecasting / deep learning / correlation

引用本文

导出引用
贾凌云, 云斯宁, 赵泽妮, 李红莲, 王赏玉, 杨柳. 神经网络短期光伏发电预测的应用研究进展[J]. 太阳能学报. 2022, 43(12): 88-97 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0501
Jia Lingyun, Yun Sining, Zhao Zeni, Li Honglian, Wang Shangyu, Yang Liu. RECENT PROGRESS OF SHORT-TERM FORECASTING OF PHOTOVOLTAIC GENERATION BASED ON ARTIFICIAL NEURAL NETWORKS[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 88-97 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0501
中图分类号: TM615   

参考文献

[1] IVANOVSKI K, HAILEMARIAM A, SMYTH R.The effect of renewable and non-renewable energy consumption on economic growth: non-parametric evidence[J]. Journal of cleaner production, 2021, 286: 124956.
[2] 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674.
XIAO Y P, WANG X F, WANG X L, et al.Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674.
[3] CHEN S, LU X, MIAO Y F, et al.The potential of photovoltaics to power the Belt and Road Initiative[J]. Joule, 2019, 3(8): 1895-1912.
[4] 何杰, 程进文, 韩磊. 新兴产业崛起、产业政策与资本市场的关系——基于中国光伏产业发展沉浮的视角[J]. 证券市场导报, 2020(12): 2-7, 18.
HE J, CHENG J W, HAN L.The relationship between the rise of emerging industries, industrial policy and capital market[J]. Securities market herald, 2020(12): 2-7, 18.
[5] YUN S N, QIN Y, UHL A R, et al.New-generation integrated devices based on dye-sensitized and perovskite solar cells[J]. Energy & environmental science, 2018, 11(3): 476-526.
[6] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151.
GONG Y F, LU Z X, QIAO Y, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of electric power systems, 2016, 40(4): 140-151.
[7] 成珂, 孙琦琦, 马晓瑶. 基于主成分回归分析的气象因子对光伏发电量的影响[J]. 太阳能学报, 2021, 42(2): 403-409.
CHENG K, SUN Q Q, MA X Y.Influence of meteorological factors on photovoltaic power generation based on principal component regression analysis[J]. Acta energiae solaris sinica, 2021, 42(2): 403-409.
[8] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[9] BLAGA R, SABADUS A, STEFU N, et al.A current perspective on the accuracy of incoming solar energy forecasting[J]. Progress in energy and combustion science, 2019, 70: 119-144.
[10] 王育飞, 杨启星, 薛花. 考虑混沌特征的增强型大脑情绪神经网络光伏发电功率超短期预测模型[J]. 高电压技术, 2021, 47(4): 1165-1177.
WANG Y F, YANG Q X, XUE H.Ultra-short-term prediction model of enhanced brain emotional neural network considering chaotic characteristics for photovoltaic power generation[J]. High voltage engineering, 2021, 47(4): 1165-1177.
[11] 杨茂, 王凯旋. 基于CEEMD-DBN模型的光伏出力日前区间预测[J]. 高电压技术, 2021, 47(4): 1156-1164.
YANG M, WANG K X.Day-ahead interval forecasting of PV power based on CEEMD-DBN model[J]. High voltage engineering, 2021, 47(4): 1156-1164.
[12] 陈中, 车松阳. 基于云变换的光伏出力预测模型[J]. 太阳能学报, 2019, 40(11): 3054-3061.
CHEN Z, CHE S Y.Photovoltaic output forecast based on cloud models[J]. Acta energiae solaris sinica, 2019, 40(11): 3054-3061.
[13] THEOCHARIDES S, MAKRIDES G, LIVERA A, et al.Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing[J]. Applied energy, 2020, 268: 115023.
[14] MOREIRA M O, BALESTRASSI P P, PAIVA A P, et al.Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting[J]. Renewable and sustainable energy reviews, 2021, 135: 110450.
[15] LIN P J, PENG Z N, LAI Y F, et al.Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets[J]. Energy conversion and management, 2018, 177: 704-717.
[16] 孙荣富, 王隆扬, 王玉林, 等. 基于数字孪生的光伏发电功率超短期预测[J]. 电网技术, 2021, 45(4): 1258-1264.
SUN R F, WANG L Y, WANG Y L, et al.Ultra-short-term prediction of photovoltaic power generation based on digital twins[J]. Power system technology, 2021, 45(4): 1258-1264.
[17] 朱想, 丁云龙, 郭力, 等. 基于改进NARX神经网络算法的光伏发电功率短期预测[J]. 武汉大学学报(理学版), 2020, 66(5): 505-511.
ZHU X, DING Y L, GUO L, et al.Short-term forecast for photovoltaic power generation based on improved NARX neural network algorithm[J]. Journal of Wuhan University(natural science edition), 2020, 66(5): 505-511.
[18] LIU Z F, LI L L, TSENG M L, et al.Prediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine model[J]. Journal of cleaner production, 2020, 248: 119272.
[19] MOREIRA M O, BALESTRASSI P P, PAIVA A P, et al.Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting[J]. Renewable and sustainable energy reviews, 2021, 135: 110450.
[20] ANTONANZAS J, OSORIO N, ESCOBAR R, et al.Review of photovoltaic power forecasting[J]. Solar energy, 2016, 136: 78-111.
[21] DAS U K, TEY K S, SEYEDMAHMOUDIAN M, et al.Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 912-928.
[22] LEVA S, DOLARA A, GRIMACCIA F, et al.Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power[J]. Mathematics and computers in simulation, 2017, 131: 88-100.
[23] WHITTINGTON J C R, BOGACZ R. Theories of error back-propagation in the brain[J]. Trends in cognitive sciences, 2019, 23(3): 235-250.
[24] BEHERA M K, MAJUMDER I, NAYAK N.Solar photovoltaic power forecasting using optimized modified extreme learning machine technique[J]. Engineering science and technology, an international journal, 2018, 21(3): 428-438.
[25] HOSSAIN M, MEKHILEF S, DANESH M, et al.Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems[J]. Journal of cleaner production, 2017, 167: 395-405.
[26] YANG Z L, MOURSHED M, LIU K L, et al.A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting[J]. Neurocomputing, 2020, 397: 415-421.
[27] ZHONG J Q, LIU L Y, SUN Q, et al.Prediction of photovoltaic power generation based on general regression and back propagation neural network[J]. Energy procedia, 2018, 152: 1224-1229.
[28] ZHANG S H, WANG J S, LIU H B, et al.Prediction of energy photovoltaic power generation based on artificial intelligence algorithm[J]. Neural computing and applications, 2021, 33: 821-835.
[29] 王英立, 陶帅, 候晓晓, 等. 基于MIV分析的GA-BP神经网络光伏短期发电预测[J]. 太阳能学报, 2020, 41(8): 236-242.
WANG Y L, TAO S, HOU X X, et al.GA-BP neural network photovoltaic power generation short-term forecast based on MIV analysis[J]. Acta energiae solaris sinica, 2020, 41(8): 236-242.
[30] 胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6): 256-263.
HU B, ZHAN Z Q, CHEN J, et al.Prediction research on short-term photovoltaic output based on PCA-GA-Elman[J]. Acta energiae solaris sinica, 2020, 41(6): 256-263.
[31] 李练兵, 张佳, 韩靖楠, 等. 基于Elman算法的光伏阵列的短期功率预测研究[J]. 太阳能学报, 2017, 38(6): 1560-1566.
LI L B, ZHANG J, HAN J N, et al.Short-term power forecast research of PV array based on Elman algorithm[J]. Acta energiae solaris sinica, 2017, 38(6): 1560-1566.
[32] HUANG G, HUANG G B, SONG S, et al.Trends in extreme learning machines: a review[J]. Neural networks, 2015, 61: 32-48.
[33] WAN C, LIN J, SONG Y H, et al.Probabilistic forecasting of photovoltaic generation: an efficient statistical approach[J]. IEEE transactions on power systems, 2017, 32(3): 2471-2472.
[34] 王琦, 季顺祥, 钱子伟, 等. 基于熵理论和改进ELM的光伏发电功率预测[J]. 太阳能学报, 2020, 41(10): 151-158.
WANG Q, JI S X, QIAN Z W, et al.Photovoltaic power prediction based on entropy theory and improved ELM[J]. Acta energiae solaris sinica, 2020, 41(10): 151-158.
[35] 张成, 白建波, 兰康, 等. 基于数据挖掘和遗传小波神经网络的光伏电站发电量预测[J]. 太阳能学报, 2021, 42(3): 375-382.
ZHANG C, BAI J B, LAN K, et al.Photovoltaic power generation prediction based on data mining and genetic wavelet neural network[J]. Acta energiae solaris sinica, 2021, 42(3): 375-382.
[36] 姚宏民, 杜欣慧, 秦文萍. 基于密度峰值聚类及GRNN神经网络的光伏发电功率预测方法[J]. 太阳能学报, 2020, 41(9): 184-190.
YAO H M, DU X H, QIN W P.PV power forecasting approach based on density peaks clustering and general regression neural network[J]. Acta energiae solaris sinica, 2020, 41(9): 184-190.
[37] MELLIT A, PAVAN A M, LUGHI V.Deep learning neural networks for short-term photovoltaic power forecasting[J]. Renewable energy, 2021, 172: 276-288.
[38] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[39] WANG F, ZHANG Z Y, LIU C, et al.Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting[J]. Energy conversion and management, 2019, 181: 443-462.
[40] WANG F, XUAN Z M, ZHEN Z, et al.A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy conversion and management, 2020, 212: 112766.
[41] DONG N, CHANG J F, WU A G, et al.A novel convolutional neural network framework based solar irradiance prediction method[J]. International journal of electrical power & energy systems, 2020, 114: 105411.
[42] CHAI S J, XU Z, JIA Y W, et al.A robust spatiotemporal forecasting framework for photovoltaic generation[J]. IEEE transactions on smart grid, 2020, 11(6): 5370-5382.
[43] ZANG H X, CHENG L L, DING T, et al.Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International journal of electrical power & energy systems, 2020, 118: 105790.
[44] HUANG Q, WEI S Y.Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy conversion and management, 2020, 220: 113085.
[45] ZHENG J Q, ZHANG H R, DAI Y H, et al.Time series prediction for output of multi-region solar power plants[J]. Applied energy, 2020, 257: 114001.
[46] SHARADGA H, HAJIMIRZA S, BALOG R S.Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable energy, 2020, 150: 797-807.
[47] 谢小瑜, 周俊煌, 张勇军, 等. 基于W-BiLSTM的可再生能源超短期发电功率预测方法[J]. 电力系统自动化, 2021, 45(8): 175-184.
XIE X Y, ZHOU J H, ZHANG Y J, et al.W-BiLSTM based ultra-short-term generation power prediction method of renewable energy[J]. Automation of electric power systems, 2021, 45(8): 175-184.
[48] ZHAO X, BARBER S, TAYLOR C C, et al.Classification tree methods for panel data using wavelet-transformed time series[J]. Computational statistics & data analysis, 2018, 127: 204-216.
[49] WANG H Z, YI H Y, PENG J C, et al.Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J]. Energy conversion and management, 2017, 153: 409-422.
[50] ZHANG T F, LYU C F, MA F M, et al.A photovoltaic power forecasting model based on dendritic neuron networks with the aid of wavelet transform[J]. Neurocomputing, 2020, 397: 438-446.
[51] ZHU T T, WEI H K, ZHAO X, et al.Clear-sky model for wavelet forecast of direct normal irradiance[J]. Renewable energy, 2017, 104: 1-8.
[52] SIBALIJA T V.Particle swarm optimisation in designing parameters of manufacturing processes: a review (2008-2018)[J]. Applied soft computing, 2019, 84: 105743.
[53] NIU D X, WANG K K, SUN L J, et al.Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study[J]. Applied soft computing, 2020, 93: 106389.
[54] ZHOU Y, ZHOU N R, GONG L H, et al.Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine[J]. Energy, 2020, 204: 117894.
[55] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on Kmeans and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.
[56] 黄雨薇, 彭道刚, 姚峻, 等. 基于SSA和K均值的TD-BP神经网络超短期光伏功率预测[J]. 太阳能学报, 2021, 42(4): 229-238.
HUANG Y W, PENG D G, YAO J, et al.Ultra-short-term photovoltaic power forecast of TD-BP neural network based on SSA and K-means[J]. Acta energiae solaris sinica, 2021, 42(4): 229-238.
[57] 王晨阳, 段倩倩, 周凯, 等. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测[J]. 物理学报, 2020, 69(10): 149-155.
WANG C Y, DUAN Q Q, ZHOU K, et al.A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm[J]. Acta physica sinica, 2020, 69(10): 149-155.

基金

国家重点研发计划(2018YFB1502902)

PDF(1612 KB)

Accesses

Citation

Detail

段落导航
相关文章

/