以中国某海上风电场筒型基础为研究对象,识别其建造期的风险源,并建立风险指标体系,然后基于改进的模糊故障树方法量化筒型基础建造期的整体风险发生概率,并与单桩基础结果进行对比。研究结果表明:筒型基础及单桩基础结构建造期的风险发生概率分别为3.21×10-3、9.47×10-3。依据DNV规范规定的失效频率等级可知,海上风电筒型基础及单桩基础结构建造期的风险等级均为高风险,但单桩基础的风险概率明显高于筒型基础,高约66.10%,筒型基础建造期的风险更低,工程实用性强。
Abstract
This study is to investigate the overall risk probability of the bucket foundation during the construction period. To achieve the above purpose, the risk sources were first identified. Then, the risk index system of the bucket foundation during the construction period was further constructed. Finally, an improved fuzzy fault tree analysis method was employed to quantify the overall risk probability of the bucket foundation and monopile foundation. The results obtained by the proposed method in this study show that the risk probability of the bucket foundation and monopile foundation is 3.21×10-3 and 9.47×10-3, respectively. According to DNV specification, both the risk probability of the bucket foundation and monopile foundation during the construction period falls into the high-risk level range, and the latter is 66.10 % higher than the bucket foundation. We can conclude that the bucket foundation is relatively safe during the construction period and has preferable engineering practicability.
关键词
海上风电机组 /
风险分析 /
故障树分析 /
筒型基础
Key words
offshore wind turbines /
risk analysis /
fault tree analysis /
bucket foundation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁红岩, 章李卉, 张浦阳, 等. 海上临坡宽浅式筒型基础承载特性研究[J]. 太阳能学报, 2021, 42(2): 163-171.
DING H Y, ZHANG L H, ZHANG P Y, et al.Bearing capacity analysis of large diameter and shallow buried bucket foundation near slope for offshore wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 163-171.
[2] 郝帅, 余杨, 吴雷, 等. 复杂载荷下深水顶张式立管屈曲失效风险分析[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(6): 555-565.
HAO S, YU Y, WU L, et al.Risk analysis on buckling failure of deepwater TTRs under complex loads[J]. Journal of Tianjin University(science and technology), 2018, 51(6): 555-565.
[3] 余建星, 刘天, 余杨. 顶张紧式立管作业风险源识别与失效模型[J]. 油气储运, 2020, 39(1): 112-120.
YU J X, LIU T, YU Y.Risk source identification and failure model for the operation of top tensioned riser[J]. Oil & gas storage and transportation, 2020, 39(1): 112-120.
[4] 刘圆. 基于疲劳损伤和倒塌事故的导管架平台结构风险分析[J]. 计算力学学报, 2019, 36(5): 650-655.
LIU Y.Risk analysis of jacket platform structure based on failure probability of fatigue damage and collapse[J]. Chinese journal of computational mechanics, 2019, 36(5): 650-655.
[5] 程康, 吴顺平, 曹蛟龙, 等. 基于FLACS的海上钻井平台定量风险评估研究[J]. 华北科技学院学报, 2019, 16(5): 33-38.
CHENG K,WU S P,CAO J L,et al.Study on quantitative risk assessment of offshore drilling platform based on FLACS[J]. Journal of North China Institute of Science and Technology, 2019, 16(5): 33-38.
[6] 罗小芳, 孙宇, 白旭, 等. 基于动态故障树的半潜式钻井平台钻井系统失效风险分析[J]. 船舶工程, 2019, 41(3): 107-114.
LUO X F, SUN Y, BAI X, et al.Failure risk analysis of drilling system of semi-submersible drilling platform based on dynamic fault tree[J]. Ship engineering, 2019, 41(3): 107-114.
[7] SHI L, SHUAI J, XU K.Fuzzy fault tree assessment based on improved AHP for fire and explosion accidents for steel oil storage tanks[J]. Journal of hazardous materials, 2014, 278: 529-538.
[8] YU J X, CHEN H C, YU Y, et al.A weakest t-norm based fuzzy fault tree approach for leakage risk assessment of submarine pipeline[J]. Journal of loss prevention in the process industries, 2019, 62: 103968.
[9] KANG J C, SUN L P, SUN H, et al.Risk assessment of floating offshore wind turbine based on correlation-FMEA[J]. Ocean engineering, 2017, 129: 382-388.
[10] 乐丛欢, 丁红岩, 董国海, 等. 基于模糊故障树的海洋立管破坏失效风险分析[J]. 自然灾害学报, 2012, 21(2): 173-179.
LE C H, DING H Y, DONG G H, et al.Risk analysis of failure damage to marine riser based on fuzzy fault tree[J]. Journal of natural disasters, 2012, 21(2): 173-179.
[11] 赵斌. 海上风电复合筒型基础预制张拉和吊装技术研究[D]. 天津: 天津大学, 2018.
ZHAO B.Research on prestress tensioning and lifting technique of composite bucket foundation for offshore wind turbine[D]. Tianjin: Tianjin University, 2018.
[12] DING H Y, ZHU Q, ZHANG P Y.Dynamic simulation on collision between ship and offshore wind turbine[J]. Transactions of Tianjin University, 2014, 20(1): 1-6.
[13] WANG X F, ZENG X W, LI J L, et al.A review on recent advancements of substructures for offshore wind turbines[J]. Energy conversion and management, 2018, 158: 103-119.
[14] 韩传峰, 何臻, 马良河. 基于故障树分析的建设工程风险识别系统[J]. 自然灾害学报, 2006, 15(5): 183-187.
HAN C F, HE Z, MA L H.Fault tree analysis-based risk recognition system for construction[J]. Journal of natural disasters, 2006, 15(5): 183-187.
[15] GJBZ 768A—1998, 故障树分析指南[S].
GJBZ 768A—1998, Guide to fault tree analysis[S].
[16] CHEN S J,WANG H, CHING L.Fuzzy multiple attribute decision making methods and applications[M]. Berlin:Springer-Verlag, 1992: 289-486.
[17] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7): 93-100.
DENG X,LI J M, ZENG H J, et al.Research on computation methods of AHP weight vector and its applications[J]. Mathematics in practice and theory, 2012, 42(7): 93-100.
[18] DNV-OS-F101, Submarine pipeline system[S].
基金
河北省自然科学基金创新研究群体项目(E2020402074); 天津市自然科学基金(20JCQNJC01540); 国家自然科学基金创新研究群体科学基金(51621092); 高等学校学科创新引智计划(B14012)