海上风电场集电多分支线路故障区段定位方法

王晓东, 王永浩, 刘颖明, 高兴

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 163-170.

PDF(1666 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1666 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 163-170. DOI: 10.19912/j.0254-0096.tynxb.2021-0568

海上风电场集电多分支线路故障区段定位方法

  • 王晓东, 王永浩, 刘颖明, 高兴
作者信息 +

FAULT BRANCH LOCATION FOR MULTI-BRANCH COLLECTION LINES OF OFFSHORE WIND FARM

  • Wang Xiaodong, Wang Yonghao, Liu Yingming, Gao Xing
Author information +
文章历史 +

摘要

针对海上风电场集电多分支线路导致的故障定位精度不高的问题,提出一种基于行波原理与故障分支判定矩阵的故障区段定位方法。分析风电场拓扑结构和行波波头传输路径,建立固有距离差值矩阵。利用变分模态分解(VMD)和Teager能量算子(TEO)标定各端故障初始行波波头,并根据双端行波法得出故障距离差值矩阵。通过计算故障距离差值矩阵与固有距离差值矩阵的差值,构建故障分支判据判定矩阵,并根据不同故障点判定矩阵之间的差别,提出相应的故障区段判定依据。仿真结果表明:所提故障区段定位方法精确率高,且不受过渡电阻、故障类型等因素的影响。

Abstract

To solve the problem of poor accuracy of fault location caused by multi-branch collector line of offshore wind farms, a fault section location method based on traveling wave principle and fault branch criterion matrix is proposed. Inherent distance difference matrix (IDDM) is established through analyzing wind farm topology and the transmission path of traveling wave. Variational Mode Decomposition (VMD) and Teager Energy Operation (TEO) are used to determine the arriving time of initial traveling wave to each terminal. Then, fault distance different matrix (FDDM) is obtained by the two-terminal traveling wave method, and calculating the difference between IDDM and FDDM to establish the fault branch criterion matrix (FBCM). The corresponding fault section criterion is proposed according to the difference of FBCM at different fault sections. The simulation result show that the proposed method can accurately determine fault section and it is robust to transition resistances, fault types and other factors, which has high accuracy rate.

关键词

海上风电场 / 故障定位 / 行波 / 分支判定矩阵 / 变分模态分解

Key words

offshore wind farms / fault location / traveling wave / branch criterion matrix / variational mode decomposition

引用本文

导出引用
王晓东, 王永浩, 刘颖明, 高兴. 海上风电场集电多分支线路故障区段定位方法[J]. 太阳能学报. 2023, 44(1): 163-170 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0568
Wang Xiaodong, Wang Yonghao, Liu Yingming, Gao Xing. FAULT BRANCH LOCATION FOR MULTI-BRANCH COLLECTION LINES OF OFFSHORE WIND FARM[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 163-170 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0568
中图分类号: TM773   

参考文献

[1] GUO G P, ZHA K P, ZHANG J, et al.Grounding fault in series-connection-based offshore wind farms: fault clearance[J]. IEEE transactions on power electronics, 2020, 35(9): 9357-9367.
[2] 张科, 朱永利, 郑艳艳, 等. 风电场输电线路单相接地故障定位研究[J]. 太阳能学报, 2020, 41(5): 114-120.
ZHANG K, ZHU Y L, ZHENG Y Y, et al.Fault location of signal-phase earth in transmission lines wind farm[J].Acta energiae solaris sinica, 2020, 41(5): 114-120.
[3] 陆元园, 王宾, 刘辉, 等. 风电场并网输电线路单相接地故障单端测距方法[J]. 电力系统自动化, 2017, 41(10): 100-105.
LU Y Y, WANG B, LIU H, et al.Accurate signal terminal fault location algorithm for signal-line-to-ground fault in transmission lines wind farm connection[J]. Automation of electric power systems, 2017, 41(10): 100-105.
[4] 彭华, 朱永利, 袁胜辉. 风电场集电线路单相接地故障组合测距[J]. 仪器仪表学报, 2020, 41(9): 88-97.
PENG H, ZHU Y L, YUAN S H, et al.A combined fault location for single-phase grounding of wind farm collection line[J]. Chinese journal of scientific instrument, 2020, 41(9): 88-97.
[5] LIANG Y L, LU Z J, LI W L, et al.A novel fault impedance calculation method for distance protection against fault resistance[J]. IEEE transactions on power delivery, 2019, 35(1): 396-407.
[6] 刘晓军, 岳爽, 赵妍, 等. 基于VMD-SMMG变换的微弱行波双端测距研究[J]. 电网技术, 2019, 43(10): 3841-3847.
LIU X J, YUE S, ZHAO Y, et al.Research on weak traveling wave location based on VMD-SMMG transform[J]. Power system technology, 2019, 43(10): 3841-3847.
[7] 刘洋, 曹云东, 侯春光. 基于经验模态分解及维格纳威尔分布的电缆双端故障定位算法[J]. 中国电机工程学报, 2015, 35(16): 4086-4093.
LIU Y,CAO Y D, HOU C G.The cable two-terminal fault location algorithm based on EMD and WVD[J]. Proceedings of the CSEE,2015, 35(16): 4086-4093.
[8] 陈旭, 朱永利, 赵雪松, 等. 考虑线路长度变化的T型线路行波测距[J]. 电网技术, 2015, 39(5): 1438-1443.
CHEN X, ZHU Y L, ZHAO X S, et al.Traveling wave fault location for T-shaped transmission line considering change of line length[J]. Power system technology, 2015,39(5): 1438-1443.
[9] 于华楠, 马聪聪, 王鹤. 基于压缩感知估计行波自然频率的输电线路故障定位方法研究[J]. 电工技术学报,2017, 32(23): 140-148.
YU H N, MA C C, WANG H.Transmission line fault location method based on compressed sensing estimation of traveling wave natural frequencies[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 140-148.
[10] 唐金锐, 尹项根, 张哲, 等. 零模检测波速度的迭代提取及其在配电网单相接地故障定位中的应用[J]. 电工技术学报, 2013, 28(4): 202-211.
TANG J R, YIN X G, ZHANG Z, et al.Iterative extraction of detected zero-mode wave velocity and its application in single phase-to-ground fault location in distribution networks[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 202-211.
[11] 张帆, 潘贞存, 马琳琳, 等. 基于模量行波传输时间差的线路接地故障测距与保护[J]. 中国电机工程学报,2009, 29(10): 78-83.
ZHANG F, PAN Z C, MA L L, et al.Transmission line fault location and protection based on the gap between Zero mode and aerial mode traveling wave propagation time[J].Proceedings of the CSEE, 2009, 29(10): 78-83.
[12] 张科, 孙立志, 朱永利, 等. 基于矢量偏离度的风电场集电线路故障定位方法[J]. 电力系统自动化, 2019, 43(10): 127-134.
ZHANG K, SUN L Z, ZHU Y L, et al.Fault location method of wind farm collection line based on vector deviation degree[J]. Automation of electric power systems, 2019, 43(10): 127-134.
[13] 贾惠彬, 赵海锋, 方强华, 等. 基于多端行波的配电网单相接地故障定位方法[J]. 电力系统自动化, 2012, 36(2): 96-100.
JIA H B, ZHAO H F, FANG Q H, et al.A single-phase earth fault location method for distribution network based on multi-terminal traveling wave[J]. Automation of electric power systems, 2012, 36(2): 96-100.
[14] 邓丰, 李欣然, 曾祥君, 等. 基于多端故障行波时差的含分布式电源配电网故障定位新方法[J]. 中国电机工程学报, 2018, 38(15): 4399-4409, 4640.
DENG F, LI X R, ZENG X J, et al.A novel multi-terminal fault location method based on traveling wave time difference for radial distribution systems with distributed generators[J]. Proceedings of the CSEE, 2018, 38(15): 4399-4409, 4640.

基金

辽宁省“兴辽英才计划”(XLYC1802041); 辽宁省中央引导地方科技发展资金计划(2021JH6/10500166)

PDF(1666 KB)

Accesses

Citation

Detail

段落导航
相关文章

/