基于混沌海鸥优化算法的含光伏发电系统负荷模型参数辨识

盛四清, 关皓闻, 雷业涛, 张文朝, 潘晓杰, 邵冲, 王逾桐

太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 64-72.

PDF(1946 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1946 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (7) : 64-72. DOI: 10.19912/j.0254-0096.tynxb.2021-0571

基于混沌海鸥优化算法的含光伏发电系统负荷模型参数辨识

  • 盛四清1, 关皓闻1, 雷业涛2, 张文朝2, 潘晓杰3, 邵冲4, 王逾桐5
作者信息 +

PARAMETER IDENTIFICATION OF LOAD MODEL OF PHOTOVOLTAIC POWER GENERATION SYSTEM BASED ON CHAOTIC SEAGULL OPTIMIZATION ALGORITHM

  • Sheng Siqing1, Guan Haowen1, Lei Yetao2, Zhang Wenchao2, Pan Xiaojie3, Shao Chong4, Wang Yutong5
Author information +
文章历史 +

摘要

针对分布式光伏发电系统广泛接入配电网,导致电力系统潮流计算速度和精度较低的问题,提出一种基于混沌海鸥优化算法的含光伏发电系统负荷模型参数辨识模型。首先,在综合负荷模型的虚拟母线上接入等效光伏发电系统的负荷模型,从而建立配电网广义负荷模型;之后,提出一种将混沌优化与海鸥优化相结合的优化算法,基于该算法完成配电网的等值,并在此基础上进行含光伏发电的综合负荷模型参数辨识。最后,通过仿真表明该文提出的算法,相比于传统的粒子群算法和单一海鸥优化算法,在计算精度和收敛速度等方面具有优越性,并可应用于负荷模型的参数优化。

Abstract

Aiming at the problem that distributed photovoltaic power generation systems are widely connected to the distribution network, resulting in low power flow calculation speed and accuracy, this paper proposes a parameter identification model of photovoltaic power generation system load models based on chaotic seagull optimization algorithm. First, the load model of the equivalent photovoltaic power generation system is connected to the virtual bus of the comprehensive load model to establish a generalized load model of the distribution network; then, an optimization algorithm combining chaos optimization and seagull optimization is proposed, based on this algorithm Complete the equivalence of the distribution network, and on this basis, carry out the parameter identification of the comprehensive load model including photovoltaic power generation. Finally, simulations show that the proposed algorithm is superior to traditional particle swarm optimization and single seagull optimization in terms of calculation accuracy and convergence speed, and can be applied to load model parameter optimization.

关键词

光伏发电 / 负荷模型 / 参数辨识 / 海鸥优化算法

Key words

photovoltaic power generation / load model / parameter identification / seagull optimization algorithm

引用本文

导出引用
盛四清, 关皓闻, 雷业涛, 张文朝, 潘晓杰, 邵冲, 王逾桐. 基于混沌海鸥优化算法的含光伏发电系统负荷模型参数辨识[J]. 太阳能学报. 2022, 43(7): 64-72 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0571
Sheng Siqing, Guan Haowen, Lei Yetao, Zhang Wenchao, Pan Xiaojie, Shao Chong, Wang Yutong. PARAMETER IDENTIFICATION OF LOAD MODEL OF PHOTOVOLTAIC POWER GENERATION SYSTEM BASED ON CHAOTIC SEAGULL OPTIMIZATION ALGORITHM[J]. Acta Energiae Solaris Sinica. 2022, 43(7): 64-72 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0571
中图分类号: TM7   

参考文献

[1] 陈炜, 艾欣, 吴涛, 等. 光伏并网发电系统对电网的影响研究综述[J]. 电力自动化设备, 2013, 33(2): 26-32, 39.
CHEN W, AI X, WU T, et al.Influence of grid-connected photovoltaic system on power network[J]. Electric power automation equipment, 2013, 33(2): 26-32, 39.
[2] FEMIA N, PETRONE G, SPAGNUOLO G, et al.Optimization of perturb and observe maximum power point tracking method[J]. IEEE transactions on power electronics, 2005, 20(4) : 963-973.
[3] 孙丰杰, 谢宁, 王承民, 等. 2017年国际供电会议配电系统规划研究成果综述[J]. 电网技术, 2018, 42(9): 2733-2741.
SUN F J, XIE N, WANG C M, et al.Review of CIRED 2017 on power distribution system planning[J]. Power system technology, 2018, 42(9): 2733-2741.
[4] 滕云, 张铁岩, 陈哲. 多能源互联系统优化运行与控制技术研究现状与前景展望[J]. 可再生能源, 2018, 36(3): 467-474.
TENG Y, ZHANG T Y, CHEN Z.Review of operation optimization and control of multi-energy interconnection system based on micro-grid[J]. Renewable energy resources, 2018, 36(3) : 467-474.
[5] SONG Y P, BLAABJERG F.Overview of DFIG-based wind power system resonances under weak networks[J]. IEEE transactions on power electronics, 2017, 32(6): 4370-4394.
[6] 吴峰, 李玮. 含高渗透率分布式光伏发电系统的配电网动态等值分析[J]. 电力系统自动化, 2017, 41(9): 65-70, 181.
WU F, LI W.Dynamic equivalence analysis of distribution network integrated with highr penetration distributed photovoltaic generation system[J]. Automation of electric power systems, 2017, 41(9): 65-70, 181.
[7] 吴峰, 戴小妹. 计及高渗透率光伏的配电网广义负荷一体化等值建模[J]. 电力自动化设备, 2020, 40(5): 1-9, 46.
WU F, DAI X M.Integrated equivalent modeling for generalized loads of distribution network considering high-penetration photovoltaic[J]. Electric power automation equipment, 2020, 40(5): 1-9, 46.
[8] ZALI M S, MILANOVIC J V.Generic model of active distribution network for large power system stability studies[J]. IEEE transactions on power systems, 2013, 28(3): 3126-3133.
[9] SUN P, TENG Y, CHEN Z.Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis[J]. Applied energy, 2021, 296: 116982.
[10] 培强, 曾小军, 黄际元, 等. 面向综合负荷的并网光伏发电系统等效建模[J]. 电力系统自动化, 2016, 40(8): 43-50.
PEI Q, ZENG X J, HUANG J Y, et al.Power system state identification based on set theory estimation part four outlier identification[J]. Automation of electric power systems, 2016, 40(8): 43-50.
[11] 黄玉龙, 陈迅, 刘明波, 等. 动态负荷模型参数辨识的微分进化算法[J]. 电工技术学报, 2013, 28(11): 270-277.
HUANG Y L, CHEN X, LIU M B, et al.Differential evolution algorithm for dynamic load model parameter identification[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 270-277.
[12] 韩民晓, 马杰, 姚蜀军, 等. 改进的遗传算法辨识综合负荷模型[J]. 电力系统及其自动化学报, 2011, 23(3) : 79-83.
HAN M X, MA J, YAO S J, et al.Improved genetic algorithm and its application to composite load model[J]. Proceedings of the CSU-EPSA, 2011, 23(3): 79-83.
[13] 屈星, 李欣然, 宋军英, 等. 遗传算子自适应设计及其在负荷建模中的应用[J]. 电力系统及其自动化学报, 2018, 30(7) : 65-72.
QU X, LI X R, SONG J Y, et al.Adaptive design of genetic operators and its application to power load modeling[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 65-72.
[14] DHIMAN G, KUMAR V.Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems[J]. Knowlege-based systems, 2019, 165: 169-196
[15] 孟非, 潘朋朋. 基于混沌PSO-BP混合算法的神经网络[J]. 计算机仿真, 2011, 28(2): 196-199.
MENG F, PAN P P.Neural network trained by hybrid algorithms based on chaos particle swarm optimization and back propagation algorithm[J]. Computer simulation, 2011, 28(2): 196-199.
[16] KHAZAEI J, TU Z, LIU W.Small-signal modeling and analysis of virtual inertia-based PV systems[J]. IEEE transactions on energy conversion, 2020, 35(2) : 1129-1138.
[17] SUN P, TENG Y, LENG O, et al.Stability control method of hybrid AC-DC transmission systems considering cross-region multi-energy coordination[J]. CSEE journal of power and energy systems, 2021, 7(4): 753-760.
[18] LI C.Unstable operation of photovoltaic inverter from field experiences[J]. IEEE transactions on power delivery, 2017, 33(2): 1013-1015.
[19] 张剑, 孙元章. 含有分布式电源的广义负荷建模[J]. 电网技术, 2011, 35(8): 41-46.
ZHANG J, SUN Y Z.Generalized load modeling considering wind generators connected to distribution network[J]. Power system technology, 2011, 35(8): 41-46.
[20] ZHOU J Z, DING H, FAN S, et al.Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter[J]. IEEE transactions on power delivery, 2014, 29(5): 2287-2296.

基金

国家重点研发计划(2017YFB0902100)

PDF(1946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/