水平轴潮流涡轮池壁效应修正方法分析

郭彬, 王大政, 夏岚, 荆丰梅, 周军伟

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 382-390.

PDF(2611 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2611 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 382-390. DOI: 10.19912/j.0254-0096.tynxb.2021-0572

水平轴潮流涡轮池壁效应修正方法分析

  • 郭彬1, 王大政1, 夏岚2, 荆丰梅3, 周军伟1
作者信息 +

ANALYSIS OF BLOCKAGE CORRECTION METHODS FOR HORIZONTAL AXIS TIDAL STREAM TURBINE

  • Guo Bin1, Wang Dazheng1, Xia Lan2, Jing Fengmei3, Zhou Junwei1
Author information +
文章历史 +

摘要

通过数值仿真与模型试验的方式分析池壁效应对水平轴潮流涡轮水动力性能的影响。通过总结公开发表文献中池壁效应修正方法,获取不同流域以及来流流速下5种池壁效应的修正结果,并与无限流域下水平轴潮流涡轮的能量转换效率以及阻力系数进行对比,进而获得可准确预估无限流域下水平轴潮流涡轮水动力性能的池壁效应修正方法。结果表明:池壁效应会对潮流涡轮的水动力性能产生较为明显的影响,受限流域下潮流涡轮能量转换效率以及阻力系数高于无限流域下的结果,且池壁效应对潮流涡轮的能量转换效率的影响伴随尖速比的增加呈逐渐增大的趋势。受阻塞因子与尖速比的影响,不同池壁效应修正方法的预估精度不同;其中,Pope-Harper以及Bahaj这2种池壁效应修正结果在不同来流流速、阻塞因子以及尖速比下与无限流域下潮流涡轮的水动力性能吻合良好。

Abstract

In this paper, different blockage correction methods for the hydrodynamic performance of horizontal axis tidal stream turbine are analyzed based on numerical simulations and model tests. Five correction methods from published literature are obtained, and the correction results are compared with those in free-stream condition. Finally, blockage correction methods, which can accurately predict the hydrodynamic performance of tidal stream turbine in free-stream condition, are obtained. The results show that the wall effect has obvious influence on the hydrodynamic performance of the turbine. Power coefficients and drag coefficients in limited conditions are higher than those in free-stream condition, and the wall effect on power coefficients is gradually increasing with the increase of tip speed ratio. Due to the influence of blockage factor and tip speed ratio, the prediction accuracy of blockage correction methods is different; Pope and Harper correction results and Bahaj correction results are in good agreement with the performance of tidal stream turbine in free-stream condition. The research results provide a reference for numerical simulation of turbine's hydrodynamic performance and engineering technology transformation.

关键词

数值仿真 / 水动力 / 潮流 / 池壁效应 / 能量转换系数

Key words

numerical simulation / hydrodynamics / tidal stream / wall effect / power coefficient

引用本文

导出引用
郭彬, 王大政, 夏岚, 荆丰梅, 周军伟. 水平轴潮流涡轮池壁效应修正方法分析[J]. 太阳能学报. 2022, 43(9): 382-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0572
Guo Bin, Wang Dazheng, Xia Lan, Jing Fengmei, Zhou Junwei. ANALYSIS OF BLOCKAGE CORRECTION METHODS FOR HORIZONTAL AXIS TIDAL STREAM TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 382-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0572
中图分类号: TM612   

参考文献

[1] GLAUERT H.Wind tunnel interference on wings, bodies and airscrews[R]. Aeronautical Research Committee Reports and Memoranda NO. 1566, 1933: 1-52.
[2] GLAUERT H.The elements of aerofoil and airscrew theory[M]. Cambridge: Cambridge University Press, 1947.
[3] MASKELL E C.A theory of blockage effects on bluff bodies and stalled wings in a close wind tunnel[R]. Aeronautical Research Committee Reports and Memoranda NO. 3400, 1963:1-22.
[4] POPE A, HARPER J J.Low-speed wind tunnel testing[M]. New York: John Wiley and Sons, 1966.
[5] MIKKELSEN R F, SØRENSEN J N. Modelling of wind turbine blockage[C] // Proceedings of Global Windpower Conference and Exhibition, Paris, France, 2002.
[6] BAHAJ A S, MOLLAND A F, CHAPLIN J R, et al.Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank[J]. Renewable energy, 2007, 32(3): 407-426.
[7] SHEN W Z, ZHU W J, SØRENSEN J N. Actuator line/Navier-Stokes computations for the MEXICO rotor: comparison with detailed measurements[J]. Wind energy, 2012, 15(5): 811-825.
[8] KOH W, NG E.A CFD study on the performance of a tidal turbine under various flow and blockage conditions[J]. Renewable energy, 2017, 107: 124-137.
[9] SCHLUNTZ J, WILLDEN R.The effect of blockage on tidal turbine rotor design and performance[J]. Renewable energy, 2015, 81: 432-441.
[10] TAMPIER G, TRONCOSO C, ZILIC F.Numerical analysis of a diffuser-augmented hydrokinetic turbine[J]. Ocean engineering, 2017, 145:138-147.
[11] HACKETT J E, COOPER K R.Extensions to Maskell's theory for blockage effects on bluff bodies in a closed wind tunnel[J]. Aeronautical journal, 2001, 105(1050):409-418.
[12] ROSS I, ALTMAN A.Wind tunnel blockage corrections: review and application to Savonius vertical-axis wind turbines[J]. Journal of wind engineering & industrial aerodynamics, 2011, 99(5): 523-538.
[13] SØRENSEN J N, SHEN W Z, MIKKELSEN R F. Wall correction model for wind tunnels with open test section[J]. AIAA journal, 2004, 44(8): 1890-1894.
[14] BURTON T, SHARPE D, JENKINS N, et al.Wind energy handbook[M]. New York:John Wiley and Sons, 2011.
[15] CHEN T Y, LIOU L R.Blockage corrections in wind tunnel tests of small horizontal-axis wind turbines[J]. Experimental thermal & fluid science, 2011, 35(3): 565-569.
[16] KINSEY T, DUMAS G.Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines[J]. Renewable energy, 2017, 103: 239-254.
[17] GUO B, WANG D, ZHOU X, et al.Performance evaluation of a tidal current turbine with bidirectional symmetrical foils[J]. Water, 2020, 12(1): 1-21.
[18] FERZIGER J H, PERIĆ M.Further discussion of numerical errors in CFD[J]. International journal for numerical methods in fluids, 2015, 23(12): 1263-1274.
[19] CELIK I B, GHIA U.Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of fluids engineering, 2008, 130(7): 1-4.
[20] GARRETT C, CUMMINS P.The efficiency of a turbine in a tidal channel[J]. Journal of fluid mechanics, 2007, 588:243-251.
[21] SONG K, WANG W Q, YAN Y.Numerical and experimental analysis of a diffuser-augmented micro-hydro turbine[J]. Ocean engineering, 2019, 171: 590-602.

基金

国家自然科学基金(51309070); 国家自然科学基金联合基金(U1706227)

PDF(2611 KB)

Accesses

Citation

Detail

段落导航
相关文章

/