基于实际太阳能无人机的应用背景,对其核心功率变换部分展开深入研究。通过在传统同步整流型Boost变换器基础上增加少量无源元件,利用电感电流的连续性,构造功率开关输出电容放电环节,在保证主功率电感电流纹波较小的情况下实现功率开关的零电压开通,克服传统同步整流型Boost变换器为实现软开关而工作于准方波模式下,电感电流纹波较大的问题,从而有助于延长无人机蓄电池组的使用寿命。从该拓扑的模态分析出发,对功率开关的零电压开通实现过程进行详细分析。此外,对变换器进行参数设计,总结整个变换器的主要损耗计算方法。最后,利用GaN功率开关器件,搭建一台额定功率为500 W的实验样机,并与相同工况下的同步整流型Boost变换器进行对比。实验结果与理论分析基本一致,峰值效率达到96%。验证了理论分析的准确性以及该拓扑的实际可行性。
Abstract
Based on the application background of actual solar unmanned aerial vehicle, this paper conducts indepth research on its core power conversion part. By adding a small number of passive components on the basis of the traditional synchronous rectification Boost converter, using the continuity of the inductor current to construct the output capacitor discharge link of the power switch, the zero voltage switching of the power switch can be achieved while ensuring that the main power inductor current ripple is small. It overcomes the problem of large inductor current ripple when the traditional synchronous rectification Boost converter works in quasi-square-wave mode for soft switching. This helps to extend the service life of the UAV battery pack. Starting from the modal analysis of the topology, this article analyzes the realization process of the zero voltage switching of the power switch in detail. In addition, the parameter design of the converter is carried out, and the main loss calculation method of the whole converter is summarized. Finally, using GaN power switching devices, an experimental prototype with a rated power of 500 W was built and compared with the synchronous rectification Boost converter under the same working conditions. The experimental results are basically consistent with the theoretical analysis, and the peak efficiency reaches 96%. Verifying the accuracy of theoretical analysis and the practical feasibility of the topology.
关键词
太阳能 /
光伏发电 /
无人机 /
软开关 /
转换效率 /
准方波变换器
Key words
solar energy /
PV power /
UAV /
soft switching /
conversion efficiency /
quasi-square-wave converter
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 1-28.
LIU L, CAO X, ZHANG X H, et al.Overview of the development of light and small solar/hydrogen energy drones[J]. Acta aeronautica et astronautica sinica, 2020, 41(3): 1-28.
[2] 焦黎明, 徐伟强. 太阳能/氢能长航时无人机重量能量耦合分析[J]. 太阳能学报, 2020, 41(2): 152-157.
JIAO L M, XU W Q.Coupling analysis of weight and energy of solar/hydrogen energy long-endurance UAV[J]. Acta energiae solaris sinica, 2020, 41(2): 152-157.
[3] 李洪珠, 刘飞扬, 刘艳, 等. 一种新型磁集成高增益耦合电感倍压Boost变换器[J]. 电工技术学报, 2020, 35(S2): 450-460.
LI H Z, LIU F Y, LIU Y, et al.A new type of magnetic integrated high-gain coupled inductor voltage doubler Boost converter[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 450-460.
[4] 肖龙, 伍梁, 李新, 等. 高频LLC变换器平面磁集成矩阵变压器的优化设计[J]. 电工技术学报, 2020, 35(4): 758-766.
XIAO L, WU L, LI X, et al.Optimal design of planar magnetic integrated matrix transformer for high frequency LLC converter[J]. Journal of electrical engineering and technology, 2020, 35(4): 758-766.
[5] 徐殿国, 管乐诗, 王懿杰, 等. 超高频功率变换器研究综述[J]. 电工技术学报, 2016, 31(19): 26-36.
XU D G, GUAN L S, WANG Y J, et al.Summary of research on ultra high frequency power converters[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 26-36.
[6] 刘佳斌, 肖曦, 梅红伟. 基于GaN-HEMT器件的双有源桥DC-DC变换器的软开关分析[J]. 电工技术学报, 2019, 34(S2): 534-542.
LIU J B, XIAO X, MEI H W.Soft switching analysis of dual active bridge DC-DC converters based on GaN-HEMT devices[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 534-542.
[7] 胡超, 张兴, 石荣亮, 等. 分布式电源并联系统中基于荷电状态均衡的改进型下垂控制策略[J]. 太阳能学报, 2019, 40(3): 809-816.
HU C, ZHANG X, SHI R L, et al.Improved droop control strategy based on state of charge balance in distributed power parallel system[J]. Acta energiae solaris sinica, 2019, 40(3): 809-816.
[8] 樊立萍, 童兵. 基于Boost变换器的MFC最大功率跟踪控制[J]. 太阳能学报, 2021, 42(2): 274-280.
FAN L P, TONG B.MFC maximum power tracking control based on Boost converter[J]. Acta energiae solaris sinica, 2021, 42(2): 274-280.
[9] 王海新, 沈建新, 徐建国. 基于新型智能算法对太阳能无人机光伏组件电压预测控制研究[J]. 太阳能学报, 2021, 42(4): 175-180.
WANG H X, SHEN J X, XU J G.Research on predictive control of voltage of solar UAV photovoltaic modules based on new intelligent algorithms[J]. Acta energiae solaris sinica, 2021, 42(4): 175-180.
[10] 李志军, 张奕楠, 王丽娟, 等. 基于改进量子粒子群算法的光伏多峰MPPT研究[J]. 太阳能学报, 2021, 42(5): 221-229.
LI Z J, ZHANG Y N, WANG L J, et al.Research on photovoltaic multi-peak MPPT based on improved quantum particle swarm algorithm[J]. Acta energiae solaris sinica, 2021, 42(5): 221-229.
[11] KASPER M, BURKART R M, DEBOY G, et al.ZVS of power MOSFETs revisited[J]. IEEE transactions on power electronics, 2016, 31(12): 8063-8067.
[12] RODRIGUEZ A, VAZQUEZ A, ROGINA M R, et al.Synchronous Boost converter with high efficiency at light load using QSW-ZVS and SiC MOSFETs[J]. IEEE transactions on industrial electronics, 2018, 65(1): 386-393.
[13] 孙孝峰, 刘炳杰. 光伏/蓄电池/燃料电池自主能量管理系统研究[J]. 太阳能学报, 2017, 38(8): 2176-2185.
SUN X F, LIU B J.Research on photovoltaic/battery/fuel cell autonomous energy management system[J]. Acta energiae solaris sinica, 2017, 38(8): 2176-2185.
[14] XUE J, CONG L, LEE H.A 130 W 95%-efficiency 1 MHz non-isolated boost converter using PWM zero-voltage switching and enhancement-mode GaN FETs[C]//IEEE Applied Power Electronics Conference and Exposition, Fort Worth, TX, 2014.
[15] XUE J, LEE H.Enabling high frequency high efficiency non-isolated Boost converters with quasi-square-wave zero-voltage switching and on-chip dynamic dead-time-controlled synchronous gate drive[J]. IEEE transactions on power electronics, 2015, 30(12): 6817-6828.
[16] HAN D, SARLIOGLU B.Deadtime effect on GaN-based synchronous Boost converter and analytical model for optimal deadtime selection[J]. IEEE transactions on power electronics, 2016, 31(1): 601-612.
[17] MUHLETHALER J, BIELA J, KOLAR J W, et al.Improved core-loss calculation for magnetic components employed in power electronic systems[J]. IEEE transactions on power electronics, 2012, 27(2): 964-973.
[18] REINERT J, BROCKMEYER A, DONCKER R W D. Calculation of losses in ferro and ferrimagnetic materials based on the modified Steinmetz equation[J]. IEEE transactions on industry applications, 2001, 37(4): 1055-1061.
[19] DOWELL P L.Effects of eddy currents in transformer windings[J]. Proceedings of the institution of electrical engineers, 1966, 113(8): 1387-1394.
[20] FERREIRA J A.Improved analytical modeling of conductive losses in magnetic components[J]. IEEE transactions on power electronics, 1994, 9(1): 127-131.
[21] CHEN B, WANG P, WANG Y F, et al.Comparative analysis and optimization of power loss based on the isolated series/multi resonant three-port bidirectional DC-DC converter[J]. Energies, 2017, 10(10): 1565-1591.
基金
国家重点研发计划(2018YFB0904700); 国家重大自然科学基金(51977146)