基于多目标遗传算法的垂直轴风力机专用翼型优化设计

张强, 缪维跑, 刘青松, 常林森, 李春, 张万福

太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 9-16.

PDF(2340 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2340 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (4) : 9-16. DOI: 10.19912/j.0254-0096.tynxb.2021-0610

基于多目标遗传算法的垂直轴风力机专用翼型优化设计

  • 张强1, 缪维跑1, 刘青松1, 常林森1, 李春1,2, 张万福1,2
作者信息 +

OPTIMAL DESIGN OF VERTICAL AXIS WIND TURBINE SPECIAL AIRFOIL BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM

  • Zhang Qiang1, Miao Weipao1, Liu Qingsong1, Chang Linsen1, Li Chun1,2, Zhang Wanfu1,2
Author information +
文章历史 +

摘要

为提升垂直轴风力机翼型综合气动性能,建立针对多运行工况的翼型优化设计方法。采用CST参数化方法表征翼型几何外形,通过优化的拉丁超立方抽样方法进行空间采样,利用CFD方法计算翼型气动力,并建立径向基函数神经网络代理模型,以翼型小攻角下升力和失速攻角下升阻比最优为设计目标,采用多目标遗传算法在代理模型上进行寻优,获得适用于垂直轴风力机的专用翼型以提高其在不同尖速比下的旋转力矩。对风力机常用翼型NACA0018进行优化,结果表明:以翼型失速攻角和最大升阻比攻角为优化目标,不仅提高了单翼型的升力系数与升阻比,而且将优化翼型应用于垂直轴风力机时还可提升使整机力矩系数。

Abstract

In order to improve the comprehensive aerodynamic performance of vertical axis wind airfoil, an airfoil optimization design method for multiple operating conditions was established. The CST parameterization method is used to characterize airfoil geometry shape. Through optimizing the Latin hypercube sampling method for space sampling, CFD method is used to calculate airfoil aerodynamic force, and establish the radial basis function (RBF) neural network surrogate model. Taking the optimal of airfoil lift under the small angle of attack and lift-to-drag ratio under small angle of attack as the optimal design target, adopts the multi-objective genetic algorithm optimization on the surrogate model, so as to obtain suitable dedicated airfoil for vertical axis wind turbines to improve its rotation torque under different tip speed ratios. Through optimization of the common airfoil NACA0018 for wind turbine, the results show that the lift coefficient and lift to drag ratio of a single airfoil are not only improved by taking the small angle of attack and the maximum angle of attack of lift to drag ratio as the optimization objectives, but also the torque coefficient of the whole airfoil can be improved when the optimized airfoil is applied to the vertical axis wind turbine.

关键词

垂直轴风力机 / CST参数化 / 代理模型 / 优化设计

Key words

vertical axis wind turbines / CST parameterization / surrogate model / optimization design

引用本文

导出引用
张强, 缪维跑, 刘青松, 常林森, 李春, 张万福. 基于多目标遗传算法的垂直轴风力机专用翼型优化设计[J]. 太阳能学报. 2023, 44(4): 9-16 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0610
Zhang Qiang, Miao Weipao, Liu Qingsong, Chang Linsen, Li Chun, Zhang Wanfu. OPTIMAL DESIGN OF VERTICAL AXIS WIND TURBINE SPECIAL AIRFOIL BASED ON MULTI-OBJECTIVE GENETIC ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(4): 9-16 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0610
中图分类号: TK83   

参考文献

[1] 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理, 2020(11): 21-22.
WANG Y P.Analysis of current situation and development trend of wind power generation[J]. Electric power equipment management, 2020(11): 21-22.
[2] 李春, 叶舟, 高伟, 等. 现代陆海风力机计算与仿真[M]. 上海: 上海科学技术出版社, 2012.
LI C, YE Z, GAO W, et al.Computation and Simulation of modern land-sea wind turbine[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2012.
[3] TUMMALA A, VELAMATI R K, SINHA D K, et al.A review on small scale wind turbines[J]. Renewable and sustainable energy reviews, 2016, 56: 1351-1371.
[4] TIMMER W A, VAN R A.Summary of delft university wind turbine dedicated airfoils[J]. ASME, 2003, 125: 488-498.
[5] FUGLSANG P, BAK C.Development of risøwind turbine airfoils[J]. Wind energy, 2004, 7(2): 145-162.
[6] TANGLER J, SOMERS D M.NREL airfoil families for HAWTs[R]. NASA STI/Recon Technical Report, 1995.
[7] BJORK A.Coordinates and calculations for the FFA-W1-xxx, FFA-W2-xxx, FFA-W3-xxx series of airfoils for HAWTs[R]. Sweden: FFA, 1990.
[8] 乔志德, 宋文萍, 高永卫. NPU-WA系列风力机翼型设计与风洞实验[J]. 空气动力学学报, 2012, 30(2): 260-265.
QIAO Z D, SONG W P, GAO Y W.Design and experiment of the NPU-WA airfoil family for wind turbines[J]. Journal of aerodynamics, 2012, 30(2): 260-265.
[9] 白井艳, 杨科, 李宏利, 等. 水平轴风力机专用翼型族设计[J]. 工程热物理学报, 2010, 31(4): 589-592.
BAI J Y, YANG K, LI H L, et al.Design of the horizontal axis wind turbine airfoil family[J]. Journal of engineering thermophysics, 2010, 31(4): 589-592.
[10] 刘俊, 宋文萍, 韩忠华, 等. Kriging模型在翼型反设计中的应用研究[J]. 空气动力学学报, 2014, 32(4): 518-526.
LIU J, SONG W P, HAN Z H, et al.Kriging-based airfoil inverse design[J]. Acta aerodynamica sinica, 2014, 32(4): 518-526.
[11] 唐新姿, 李鹏程, 陆鑫宇, 等. 随机湍流工况低雷诺数风力机翼型优化研究[J]. 计算力学学报, 2019, 36(5): 664-671.
TANG X Z, LI P C, LU X Y, et al.Optimization of low Reynolds number wind turbine airfoil under stochastic turbulence condition[J]. Chinese journal of computational mechanics, 2019, 36(5): 664-671.
[12] 陈亚琼, 方跃法, 郭盛, 等. 风力机专用翼型综合优化设计方法[J]. 中国机械工程, 2015, 26(9): 1194-1200.
CHEN Y Q, FANG Y F, GUO S, et al.Design methods of comprehensive optimization of wind turbine airfoils[J]. China mechanical engineering, 2015, 26(9): 1194-1200.
[13] 陈进, 汪泉, 李松林, 等. 翼型集成理论与B样条结合的风力机翼型优化设计方法研究[J]. 太阳能学报, 2014, 35(10): 1930-1935.
CHEN J, WANG Q, LI S L, et al.Study of optimization design method for wind turbine airfoil combine airfoil integrated theory and B-spine[J]. Acta energiae solaris sinica, 2014, 35(10): 1930-1935.
[14] 徐浩然, 杨华, 刘超. 风力机翼型尾缘加厚修型优化[J]. 太阳能学报, 2015, 36(3): 743-748.
XU H R, YANG H, LIU C.Optimization of enlarging the thickness of airfoil's trailing edge for wind turbines[J]. Acta energiae solaris sinica, 2015, 36(3): 743-748.
[15] 琚亚平, 张楚华. 基于人工神经网络与遗传算法的风力机翼型优化设计方法[J]. 中国电机工程学报, 2009, 29(20): 106-111.
JU Y P, ZHANG C H.Optimal design method for wind turbine airfoil based on artificial neural network model and genetic algorithm[J]. Proceedings of the CSEE, 2009, 29(20): 106-111.
[16] 杨硕, 程珩. 基于径向基函数模型的风力机翼型多目标优化设计[J]. 现代制造工程, 2016(3): 54-58.
YANG S, CHEN H.Multiobjective optimization design for wind turbine airfoil based on radial function model[J]. Modern manufacturing engineering, 2016(3): 54-58.
[17] 黄意坚, 宋文萍, 韩忠华, 等. 平底后缘风力机翼型的优化设计[J]. 太阳能学报, 2015, 36(10): 2442-2447.
HUANG Y J, SONG W P, HAN Z H, et al.Design and numerical optimization of flatback airfoils[J]. Acta energiae solaris sinica, 2015, 36(10): 2442-2447.
[18] ASLAM M M, HAYAT N, FAROOQ A U, et al.Vertical axis wind turbine-a review of various configurations and design techniques[J]. Renewable and sustainable energy review, 2012, 16(4): 1926-1939.
[19] KULFAN B M.Universal parametric geometry representation method[J]. Journal of aircraft, 2008, 45(1): 142-158.
[20] 王晓锋, 席光, 王尚锦. Kriging与响应面方法在气动优化设计中的应用[J]. 工程热物理学报, 2005(3): 423-425.
WANG X F, XI G, WANG S J.Application of Kriging and response surface method in the aerodynamics optimization design[J]. Journal of engineering thermophysics, 2005(3): 423-425.
[21] MONTGOMERY D C.Design and analysis of experiments[M]. New York: John Wiley & Sons, 2008.
[22] 郭胜利. 基于径向基函数网络的飞机机翼和翼梢小翼外形优化[D]. 南京: 南京航空航天大学, 2008.
GUO S L.Shape parameters optimization for wind and windtip of amphibious aircraft based on RBF[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008.
[23] 陈雯柏. 人工神经网络原理与实践[M]. 西安: 西安电子科技大学出版社, 2016: 71-72.
CHEN W B.Principle and practice of artificial neural network[M]. Xi'an: Xidian University Publishing House, 2016: 71-72.
[24] 杨阳, 李春, 缪维跑, 等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51(14): 192-198.
YANG Y, LI C, MIAO W P, et al.Global optimal Design of Wind turbines blades based on multi-object genetic algorithm[J]. Journal of mechanical engineering, 2015, 51(14): 192-198.
[25] 张荣聪. 风力机专用翼型的优化设计及气动性能数值分析[D]. 大连:大连交通大学,2014.
ZHANG R C.Optimization design and numerical analysis of aerodynamic performance on wind turbine airfoil[D]. Dalian: Dalian Jiaotong University, 2014.
[26] BELAMADI R, DJEMILI A, ILINCA A, et al.Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of wind engineering & industrial aerodynamics, 2016, 151, 79-99.
[27] MOHAMED O S, IBRAHIM A, ETMAN A K, et al.Numerical investigation of Darrieus wind turbine with slotted airfoil blades[J]. Energy conversion and management: X, 2020, 5(C): 100026.

基金

国家自然科学基金(51976131; 52006148); 上海市“科技创新行动计划”地方院校能力建设项目(19060502200)

PDF(2340 KB)

Accesses

Citation

Detail

段落导航
相关文章

/