涡流发生器形状对DU91-W2-250翼型动态失速的影响机理分析

冯俊鑫, 赵振宙, 刘惠文, 孟令玉, 陈明, 江瑞芳

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 368-374.

PDF(2893 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2893 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 368-374. DOI: 10.19912/j.0254-0096.tynxb.2021-0611

涡流发生器形状对DU91-W2-250翼型动态失速的影响机理分析

  • 冯俊鑫1, 赵振宙1,2, 刘惠文1, 孟令玉1, 陈明1, 江瑞芳1
作者信息 +

ANALYSIS OF INFLUENCE MACHISM OF VGS SHAPE PARAMETERS ON DYNAMIC STALL OF DU91-W2-250 AIRFOIL

  • Feng Junxin1, Zhao Zhenzhou1,2, Liu Huiwen1, Meng Lingyu1, Chen Ming1, Jiang Ruifang1
Author information +
文章历史 +

摘要

以DU91-W2-250翼段为研究对象,分析不同形状涡流发生器(VGs)对动态失速的影响规律。结果表明:改变VGs形状参数对增升效果影响较大,对减阻效果影响较小,矩形VGs增升减阻效果更佳。从作用机理看,影响流动控制的主要是VGs流向涡涡流强度。矩形VGs气动性能提升效果明显最佳。矩形VGs流向涡在x/c=0.30~0.50范围内边界层内外流动掺混剧烈,抑制流动分离效果更佳。

Abstract

Taking the DU91-W2-250 airfoil segment as the research object, the influence of vortex generators (VGs) with different shapes on its dynamic stall is analyzed. The results show that changing the shape parameters of VGs has a greater impact on the lift increasing effect, but less impact on the drag reduction effect, and the rectangular VGs has a better lift increasing and drag reduction effect than that of the triangular VGs and the trapezoid VGs. From the action mechanism, the flow control is mainly affected by the intensity of VGs flow direction vortex. The results show that the flow direction vortex of rectangular VGs has strong strength, slow attenuation, strong ability of restraining flow separation, and more obvious effect of increasing lift. The rectangular VGs has the best aerodynamic performance. In the range of x/c=0.25~0.50, the flow mixing inside and outside the boundary layer of rectangular VGs is severe, and the effect of restraining flow separation is better.

关键词

风力机 / 流动控制 / 气动性能 / 涡流发生器 / DU91-W2-250 / 动态失速 / 形状参数

Key words

wind turbines / flow control / aerodynamic performance / vortex generator / DU91-W2-250 / dynamic stall / shape parameter

引用本文

导出引用
冯俊鑫, 赵振宙, 刘惠文, 孟令玉, 陈明, 江瑞芳. 涡流发生器形状对DU91-W2-250翼型动态失速的影响机理分析[J]. 太阳能学报. 2022, 43(12): 368-374 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0611
Feng Junxin, Zhao Zhenzhou, Liu Huiwen, Meng Lingyu, Chen Ming, Jiang Ruifang. ANALYSIS OF INFLUENCE MACHISM OF VGS SHAPE PARAMETERS ON DYNAMIC STALL OF DU91-W2-250 AIRFOIL[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 368-374 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0611
中图分类号: TK8   

参考文献

[1] TAYLOR H D.The elimination of diffuser separation by vortex generator[R]. United Aircraft Corporation Report, No.R-4012-3, 1947.
[2] ZHAO Z Z, SHEN W Z, WANG R X, et al.Modeling of wind turbine vortex generators in considering the inter-effects between arrays[J]. Journal of renewable and sustainable energy, 2017, 9(5): 053301.
[3] ZHANG L, YANG K, XU J Z.Effects on wind turbine airfoils by vortex generators[J]. Journal of engineering thermophysics, 2010, 31(5): 749-752.
[4] VELTE C M, HANSAEN M O L. Investigation of flow behind vortex generators by stereo particle image velocimetry on a thick airfoil near stall[J]. Wind energy, 2013, 16(5): 775-785.
[5] LIN J C.Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in aerospace sciences, 2002, 38(4-5): 389-420.
[6] GODARD G, STANISLAS M.Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators[J]. Aerospace sciences and technology, 2006,10(13): 181-191.
[7] 焦建东. 加装涡流发生器风力机叶片的启动性能研究[D]. 北京: 华北电力大学, 2014.
JIAO J D.The aerodynamic properties of wind turbine blade with vortex generators[D]. Beijing: North China Electric Power University, 2014.
[8] KHALFALLAHA M G, KOLIUBB A M.Suggestions for improving wind turbines power curves[J]. Desalination,2007, 209(1-3): 221-229.
[9] 张惠, 赵宗德, 周广鑫, 等. 涡发生器参数对风力机翼型性能影响实验研究[J]. 太阳能学报, 2017, 38(12): 3999-3405.
ZHANG H, ZHAO Z D, ZHOU G X, et al.Experimental investigation of effect of vortex generator’s parameter on aerodynamic performance of wind turbine airfoil[J]. Acta energiae solaris sinica, 2017, 38(12): 3999-3405.
[10] MARTINEZ F P, FERNANDEZ G U, ZULUETA E, et al.Parametric study of low-profile vortex generators[J]. International journal of hydrogen energy, 2017, 42(28): 17700-17712.
[11] 戴丽萍, 许雅苹, 周强, 等. 涡流发生器对风力机翼型动态失速的影响[J]. 工程热物理学报, 2018, 39(8): 1707-1712.
DAI L P, XU Y P, ZHOU Q, et al.Effect of vortex generators on wind turbine airfoil in dynamic stall[J]. Journal of engineering thermophysics, 2018, 39(8): 1707-1712.
[12] 赵振宙, 苏德程, 王同光, 等. 涡流发生器对动态失速影响的模拟研究[J]. 机械工程学报, 2019, 55(24): 203-209.
ZHAO Z Z, SU D C, WANG T G, et al.Simulation study on the effect of vortex generators on dynamic stall[J]. Journal of mechanical engineering, 2019, 55(24): 203-209.
[13] 钱炜祺, 符松, 蔡金狮. 翼型动态失速的数值研究[J].空气动力学学报, 2001, 19(4): 427-433.
QIAN W Q, FU S, CAI J S.Numerical study of airfoil dynamic stall[J]. Acta aerodynamica sinica, 2001, 19(4): 427-433.
[14] MAY N E.A new vortex generator model for use in complex configuration CFD solvers[C]//19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 2001.
[15] WENDT B J.Parametric study of vortices shed from airfoil vortex generators[J]. AIAA journal, 2004, 42(11): 2185-2195.
[16] RAMSAY R F, HOFFMAN M J, GREGOREK G M.Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995.

基金

国家自然科学基金(51876054; 11502070)

PDF(2893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/