基于VMD-WPE和SSA-ELM的短期风电功率预测研究

刘栋, 魏霞, 王维庆, 叶家豪

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 360-367.

PDF(2017 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2017 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 360-367. DOI: 10.19912/j.0254-0096.tynxb.2021-0629

基于VMD-WPE和SSA-ELM的短期风电功率预测研究

  • 刘栋, 魏霞, 王维庆, 叶家豪
作者信息 +

SHORT TERM WIND POWER FORECASTING BASED ON VMD-WPE AND SSA-ELM

  • Liu Dong, Wei Xia, Wang Weiqing, Ye Jiahao
Author information +
文章历史 +

摘要

针对风电功率序列非线性、非平稳性特点,提出一种变分模态分解(VMD)-加权排列熵(WPE)和麻雀算法(SSA)优化极限学习机(ELM)的混合风电功率预测模型。首先,采用VMD技术将原始序列分解为多个固有模态分量,再采用WPE技术将各分量重组成若干个复杂度差异较大的子序列。然后,利用启发式SSA算法对ELM的参数进行优化,建立风电功率预测优化模型。最后,采用西北某风电场实际数据对所提模型进行验证。结果表明,与其他模型相比,所提模型提高了预测性能。

Abstract

Aiming at the nonlinear and non-stationary characteristics of wind power series, a hybrid wind power prediction model based on variational mode decomposition (VMD), weighted permutation entropy (WPE) and sparrow algorithm (SSA)-optimized extreme learning machine (ELM) is proposed. Firstly, the original sequence is decomposed into multiple intrinsic mode components by VMD technology, and then each component is reconstructed into several subsequences with different complexity by WPE technology. Then, a new heuristic SSA algorithm is used to optimize the parameters of ELM, and the wind power prediction optimization model is established. Finally, the actual data of a wind farm in Northwest China is used to verify the proposed model. The results show that the prediction performance of the model is improved compared with other models.

关键词

风电功率预测 / 变分模态分解 / 加权排列熵 / 麻雀算法 / 极限学习机

Key words

wind power forecasting / variational mode decomposition / weighted permutation entropy / sparrow search algorithm / extreme learning machine

引用本文

导出引用
刘栋, 魏霞, 王维庆, 叶家豪. 基于VMD-WPE和SSA-ELM的短期风电功率预测研究[J]. 太阳能学报. 2022, 43(12): 360-367 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0629
Liu Dong, Wei Xia, Wang Weiqing, Ye Jiahao. SHORT TERM WIND POWER FORECASTING BASED ON VMD-WPE AND SSA-ELM[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 360-367 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0629
中图分类号: TM614   

参考文献

[1] 谷兴凯, 范高锋, 王晓蓉, 等. 风电功率预测技术综述[J]. 电网技术, 2007, 31(S2): 335-338.
GU X K, FAN G F, WANG X R, et al.Summarization of wind power prediction technology[J]. Power system technology, 2007, 31(S2): 335-338.
[2] PONCELA M, PONCELA P, PERÁN J R. Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting[J]. Applied energy, 2013, 108: 349-362.
[3] LAHOUAR A, BEN H S J. Hour-aheadwind power forecast based on random forests[J]. Renewable energy,2017, 109: 529-541.
[4] 程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J]. 电力自动化设备, 2018, 38(5): 27-35.
CHENG Q M,CHEN L, CHENG Y M, et al.Short-term wind power forecasting method based on EEMD and LS-SVM model[J]. Electric power automation equipment, 2018, 38(5): 27-35.
[5] LIU G, YU W D.The BP neural network modeling on worsted spinning with grey Su perior theory and correlation analysis[C]//Fourth International Conference on Natural Computation, Ji’nan, China, 2008: 374-378.
[6] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(S1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al.Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[7] 朱抗, 杨洪明, 孟科. 基于极限学习机的短期风力发电预测[J]. 电力科学与技术学报, 2019, 34(2): 106-111.
ZHU K, YANG H M, MENG K.Short-term wind power forecast using extreme learning machine[J]. Journal of electric power science and technology, 2019, 34(2): 106-111.
[8] WAN C, XU Z.Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE transactions on power systems, 2014, 29(3): 1-11.
[9] 钱政, 裴岩, 曹利宵, 等. 风电功率预测方法综述[J]. 高电压技术, 2016, 42(4): 1047-1060.
QIAN Z, PEI Y, CAO L X, et al.Review of wind power forecasting method[J]. High voltage engineering, 2016, 42(4): 1047-1060.
[10] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 77-84.
JIANG G M, CHEN Z J, LI X Z, et al.Short-term prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta energiae solaris sinica, 2020, 41(5): 77-84.
[11] 彭晨宇, 陈宁, 高丙团. 结合多重聚类和分层聚类的超短期风电功率预测方法[J]. 电力系统自动化, 2020, 44(2): 173-180.
PENG C Y, CHEN N, GAO B T.Ultra-short-term wind power forecasting method combining multiple clustering and hierarchical clustering[J]. Automation of electric power systems, 2020, 44(2): 173-180.
[12] 赵征, 汪向硕. 基于CEEMD和改进时间序列模型的超短期风功率多步预测[J]. 太阳能学报, 2020, 41(7):352-358.
ZHAO Z, WANG X S.Ultra-short-term multi-step wind power prediction based on CEEMD and improved time series model[J]. Acta energiae solaris sinica, 2020, 41(7): 352-358.
[13] 武小梅, 林翔, 谢旭泉, 等. 基于VMD-PE和优化相关向量机的短期风电功率预测[J]. 太阳能学报, 2018, 39(11): 3277-3285.
WU X M, LIN X, XIE X Q, et al.Short-term wind power forecasting based on variational mode decomposition-permutation entropy and optimized relevance vector machine[J]. Acta energiae solaris sinica, 2018, 39(11):3277-3285.
[14] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2013, 62(3): 531-544.
[15] OTTEN A.Note on the Spearman rank correlation coefficient[J]. Journal of the American Statistical Association, 1973, 68(343): 585.
[16] YI Y, SHANG P J.Weighted permutation entropy based on different symbolic approaches for financial time series[J]. Physica A: statistical mechanics and its applications, 2016, 443: 137-148.
[17] 薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020.
XUE J K.Research and application of a novel swarm intelligence optimization technique: sparrow search algorithm[D]. Shanghai: Donghua University, 2020.
[18] 刘栋, 魏霞, 王维庆, 等. 基于SSA-ELM的短期风电功率预测[J]. 智慧电力, 2021, 49(6): 53-59, 123.
LIU D, WEI X, WANG W Q, et al.Short-term wind power prediction based on SSA-ELM[J]. Smart power, 2021, 49(6): 53-59, 123.
[19] HUANG G B,WANG D H, LAN Y.Extreme learning machines: a survey[J]. International journal of machine learning and cybernetics, 2011, 2(2): 107-122.

基金

国家自然科学基金(52067020)

PDF(2017 KB)

Accesses

Citation

Detail

段落导航
相关文章

/