针对城市建筑环境内的风能应用问题,利用CFD方法对4种不同建筑外形的高层建筑物顶面风场湍流特征进行研究,开展建筑外形对风向变化的敏感性分析,并分析4种建筑物顶面风速、湍流强度随高度的变化规律,确定4种建筑外形的建筑顶面风力机的合理安装位置和高度,结果表明:具有圆润曲线外形的2类建筑更利于风力机的安装,风力机的安装高度可更低;建筑物的长轴和短轴越接近,顶面越有利于风力机的安装;4种建筑外形的建筑顶面安装风力机时仅考虑U/U0≥1的有利安装高度Hu即可保证风力机的有效输出功率和运行安全;无盛行风向情况下,4种建筑物的中心区域更有利于风力机安装,风力机的安装高度最低,圆柱体、椭圆体、正方体及长方体建筑物顶面中心区域风力机最低安装高度分别为1.05H、1.09H、1.11H及1.14H。
Abstract
Aiming at the influence of building shapes on micro-siting selection of wind turbines on building roof, turbulent characteristics of wind on roof of buildings with four different shapes are studied by using CFD. The sensitivity analysis of the building shape on wind direction is carried out, and wind speed and turbulence intensity at the top of buildings are analyzd. The results show that buildings with round curve shapes are more favorable for installation wind turbines, which can be installed at a lower height. Meanwhile the long axis of the building is closer to the short axis, roofs of the building is more favorable for installation wind turbine. When install the wind turbine on the top of buildings with four shapes, the favorable installation height with U/U0≥1 can ensure the effective output power and operation safety of the wind turbine. In the absence of prevailing wind direction, the lowest center of buildings with four shapes is beneficial for installation wind turbines, while the installation height is the lowest. Hence, the lowest installation height of wind turbines in the center of the cylinder, ellipsoid, cube and cuboid buildings is 1.05H,1.09H,1.11H and 1.14H, respectively.
关键词
建筑物 /
风力机 /
湍流 /
风速 /
微观选址
Key words
building /
wind turbines /
turbulence /
wind speed /
micro-siting selection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TOJA-SILVAF F, KDND T, PERALTAC C, et al.A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation[J]. Journal of wind engineering and industrial aerodynamics, 2018, 180(2): 66-87.
[2] KC A, WHALE J, URMEE T, et al.Urban wind conditions and small wind turbines in the built environment: a review[J]. Renewable energy, 2019, 131(1): 268-283.
[3] TOJA-SILVAF F, PERALTAC C, LOPEZ-GARCIA O, et al.On roof geometry for urban wind energy exploitation in high-rise buildings[J]. Computation, 2015, 3(2): 299-325.
[4] WANG B, COTL D, ADOLPHE L, et al.Estimation of wind energy over roof of two perpendicular buildings[J]. Energy and buildings, 2015, 88(2): 57-67.
[5] BLACKMORE P.Building-mounted micro-wind turbines on high-rise and commercial buildings[R]. Watford: BRE, 2010.
[6] KONO T, KOGAKI T, KJWATA T.Numerical investigation of wind conditions for roof-mounted wind turbines: effects of wind direction and horizontal aspect ratio of a high-rise cuboid building[J]. Energies, 2016, 9(11): 907-927.
[7] LIU S M, PAN W X, ZHAO X W, et al.Influence of surrounding buildings on wind flow around a building predicted by CFD simulations[J]. Building and environment, 2018, 140: 1-10.
[8] 邸建琛, 侯亚丽, 吕爱静, 等. 非等高建筑物群内风力机的微观选址[J]. 工程热物理学报, 2020, 41(4): 898-906.
DI J C, HOU Y L, LYU A J, et al.Micrositing of rooftop wind turbine in the unequal height building group[J].Journal of engineering therm ophysics, 2020, 41(4): 898-906.
[9] TOMINAG Y, MOCHIDA A, YOSHIE R, et al.AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of wind engineering and industrial aerodynamics, 2008, 96: 1749-1761.
[10] 侯亚丽, 汪建文, 王强, 等. 建筑顶面风力机微观选址数值分析方法的研究[J]. 太阳能学报, 2018, 39(5):1351-1358.
HOU Y L, WANG J W, WANG Q, et al.Research on method of micrositing of rooftop wind turbine at the top of buildings[J]. Acta energiae solaris sinica, 2018, 39(5): 1351-1358.
[11] MILLWARD-HOPKINS J T, TOMLIN A S, MA L, et al. Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights[J]. Boundary-layer meteorology, 2011, 141(3): 443-465.
[12] 邸建琛. 高层建筑物顶面风力机微观选址的研究[D]. 呼和浩特: 内蒙古工业大学, 2020.
DI J C.Study on micro location of wind turbine on top of high-rise buildings[D]. Hohhot: Inner Mongolia Unirersity of Technoloyy, 2020.
[13] GOUSSEAN P, BLOCKEN B, VAN HEIJST G J E. Quality assessment of Large-eddy simulation of wind flow around a high-rise building: validation and solution verification[J]. Computers and fluids, 2013, 79: 120-133.
[14] International Electro Technical Commission. International Standard IEC 61400-61401. Wind turbine generator systems-part 1: Safety requirements[S].
基金
内蒙古自然科学基金(2019LH05024)