人工鱼礁-波浪能模块化浮体耦合动力响应分析

李延巍, 莫文渊, 任年鑫, 于悦凯

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 489-494.

PDF(1782 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1782 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 489-494. DOI: 10.19912/j.0254-0096.tynxb.2021-0647

人工鱼礁-波浪能模块化浮体耦合动力响应分析

  • 李延巍1, 莫文渊1, 任年鑫1, 于悦凯2
作者信息 +

COUPLED DYNAMIC ANALYSIS OF MODULAR FLOATING STRUCTURE COMBINED ARTIFICIAL REEF AND WAVE ENERGY CONVERTER

  • Li Yanwei1, Mo Wenyuan1, Ren Nianxin1, Yu Yuekai2
Author information +
文章历史 +

摘要

为综合利用海洋空间资源、生物资源以及可再生能源,该文提出一种基于张力腿平台的新型六边形浮体、浮式人工鱼礁以及波浪能装置(WEC)的集成结构系统。基于势流理论,并考虑六边形浮体与浮式人工鱼礁之间的多体水动力耦合效应和机械耦合效应,建立该集成结构系统的耦合时域分析模型。对浮式人工鱼礁和波浪能装置的主要设计参数进行初步优化,重点研究该新型集成结构系统在典型海况下的动力响应和波浪能发电特征,揭示了外侧浮式人工鱼礁可有效减弱作用于内侧六边形浮体结构的波浪载荷,并产生可观的波浪能能源供给。此外,还进一步验证了该集成结构系统在极端海况下的安全性能。

Abstract

A novel modular floating structure combined artificialreef and wave energy converter (WEC) is proposed, so as to make comprehensive use of marine space, biological resources and renewable energy. Considering the multi-body coupling effect and mechanical coupling effect between the hexagonal floating structure and the floating artificial reef, the coupling time-domain analysis model of the integrated structure system is established based on potential theory. The design parameters of the floating artificial reef and the WEC are preliminary optimized. The dynamic response characteristics and the power output characteristics of the new integrated structure system under typical sea conditions are studied. It is revealed that the outside floating artificial reef can produce considerable energy while reducing the influence of wave load on the inside hexagonal floating structure. In addition, the safety of the integrated structure system under extreme sea conditions is further verified.

关键词

波浪能转换 / 张力腿平台 / 动力分析 / 模块化浮体 / 人工鱼礁

Key words

wave energy conversion / tension-leg platform / dynamic analysis / modular floating structure / artificial reef

引用本文

导出引用
李延巍, 莫文渊, 任年鑫, 于悦凯. 人工鱼礁-波浪能模块化浮体耦合动力响应分析[J]. 太阳能学报. 2022, 43(12): 489-494 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0647
Li Yanwei, Mo Wenyuan, Ren Nianxin, Yu Yuekai. COUPLED DYNAMIC ANALYSIS OF MODULAR FLOATING STRUCTURE COMBINED ARTIFICIAL REEF AND WAVE ENERGY CONVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 489-494 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0647
中图分类号: TK513.5   

参考文献

[1] ABHINAV K A, COLLU M, BENJAMINS S, et al.Offshore multi-purpose platforms for a blue growth: a technological, environmental and socio-economic review[J]. Science of the total environment, 2020, 734: 138256.
[2] LI L, CARLO R, MAURIZIO C, et al.Analysis of the coupled dynamic response of an offshore floating multi-purpose platform for the blue economy[J]. Ocean engineering, 2020, 217: 107943.
[3] REN N X, WU H B, MA Z, et al.Hydrodynamic analysis of a novel modular floating structure system with central tension-leg platforms[J]. Ships and offshore structures, 2020, 15: 1700035.
[4] REN N X, WU H B, LIU K, et al.Hydrodynamic analysis of a modular floating structure with tension-leg platforms and wave energy converters[J]. Journal of marine science and engineering, 2021, 9: 9040424.
[5] CHENG Y, XI C, DAI S S, et al.Performance characteristics and parametric analysis of a novel multi-purpose platform combining a moonpool-type floating breakwater and an array of wave energy converters[J]. Applied energy, 2021, 292: 116888.
[6] NGUYEN H P, WANG C M, FLOCARD F, et al.Extracting energy while reducing hydroelastic responses of VLFS using a modular raft WEC-type attachment[J]. Applied ocean research, 2019, 84: 302-316.
[7] 彭伟, 张继生, 范亚宁, 等. 结合防波堤的振荡摇摆式波浪能装置试验研究[J]. 太阳能学报, 2021, 42(2):295-301.
PENG W, ZHANG J S, FAN Y N, et al.Experimental study on oscillating flap-type wave energy device integrated with breakwater[J]. Acta energiae solaris sinica, 2021, 42(2): 295-301.
[8] 陈勇, 于长清, 张国胜, 等. 人工鱼礁的环境功能与集鱼效果[J]. 大连水产学院学报, 2002, 17(1): 64-69.
CHEN Y, YU C Q, ZHANG G S, et al.The environmental function and fish gather effect of artificial reefs[J]. Journal of Dalian Ocean University, 2002, 17(1): 64-69.
[9] 张健, 冯德军, 王萍, 等. 波浪作用下箱网式浮鱼礁水动力特性研究[J]. 中国水产科学, 2019, 26(5): 1014-1020.
ZHANG J, FENG D J, WANG P, et al.Hydrodynamic characteristics of a cage-net floating reef in waves[J]. Journal of fishery sciences of China, 2019, 26(5): 1014-1020.
[10] 余求妹, 马家志, 安玉, 等. 浮绳式网箱人工浮鱼礁的设计优势及问题的探讨[J]. 安徽农业科学, 2013, 41(19): 8194-8195.
YU Q M, MA J Z, AN Y, et al.The preliminary study of design advantages and problems on artificial floating fish reef of floating rope cage[J]. Journal of Anhui agricultural science, 2013, 41(19): 8194-8195.
[11] 张丽珍, 王江涛, 胡庆松, 等. 近海中上层柔性浮鱼礁设计与应用[J]. 上海海洋大学学报, 2016, 25(4): 613-619.
ZHANG L Z, WANG J T, HU Q S, et al.Design and application of offshore middle-upper-layer flexible floating reefs[J]. Journal of Shanghai Ocean University, 2016, 25(4): 613-619.
[12] 桂福坤, 左孝, 潘昀, 等. 波浪作用下刚性框架浮体及其锚绳运动数值模拟精度分析[J]. 海洋工程, 2018, 6(4): 1-10.
GUI F K, ZUO X, PAN Y, et al.The effect on numerical precision for simulating frame floating structure tethered by a mooring cable in waves[J]. The ocean engineering, 2018, 6(4): 1-10.
[13] ANSYS, Inc.ANSYS AQWA User’s Manual[R] (Release 13.0), 2010.
[14] 任年鑫, 马哲, 欧进萍. 新型海上浮式风力机概念设计[J]. 太阳能学报, 2012, 33(10): 1710-1714.
REN N X, MA Z, OU J P.A new conceptual design for offshore floating wind turbine[J]. Acta energiae solaris sinica, 2012, 33(10): 1710-1714.
[15] REN N X, LI Y G, OU J P.The wind-wave tunnel test of a TLP type floating wind turbine[J]. Journal of renewable and sustainable energy, 2012, 4(6): 299-312.
[16] WANG Z F, ZHOU L M, DONG S, et al.Wind wave characteristics and engineering environment of the South China Sea[J]. Journal of Ocean University of China, 2014, 13(6): 893-900.
[17] GAO H J, LIANG B C, SHAO Z X.A global climate analysis of wave parameters with a focus on wave period from 1979 to 2018[J]. Applied ocean research, 2021, 111(1): 102652.

基金

海南省自然科学基金(520RC552); 国家自然科学基金(51709040); 海南大学科研启动基金(KYQD(ZR)2009)

PDF(1782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/