多输入交错并联Boost变换器功率分配控制策略

高圣伟, 王浩, 王议锋, 王忠杰, 陈博

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 62-69.

PDF(2646 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2646 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 62-69. DOI: 10.19912/j.0254-0096.tynxb.2021-0652

多输入交错并联Boost变换器功率分配控制策略

  • 高圣伟1, 王浩1, 王议锋2, 王忠杰2, 陈博2
作者信息 +

POWER DISTRIBUTION CONTROL STRATEGY OF MULTI-INPUT INTERLEAVED PARALLEL BOOST CONVERTER

  • Gao Shengwei1, Wang Hao1, Wang Yifeng2, Wang Zhongjie2, Chen Bo2
Author information +
文章历史 +

摘要

针对功率分配底层功能提出一种新型控制策略,该控制策略在传统的双闭环平均电流均流法上加以改进。首先电流内环修改为功率内环,将电压外环的输出除以输入电压再乘以功率分配系数作为新的功率给定值来实现功率分配功能。同时将自抗扰技术应用到电压外环提高母线电压的响应速度。最后基于模块化思想并利用氮化镓功率开关器件,搭建一台三输入交错并联Boost实验样机,其额定功率为1500 W,额定工作频率为500 kHz,峰值效率为98.3%。实验验证结果表明,在相同输入电压或不同输入电压的情况下均能实现功率分配功能,并具有良好的动态响应。

Abstract

The power supply system of solar UAV needs to keep the SOC of different energy storage batteries consistent at all times, so the DC/DC converter should have the basic function of power distribution to ensure the realization of the algorithm. This paper proposes a new control strategy for the bottom function of power distribution, which is an improvement on the traditional double closed-loop average current sharing method. First, the current inner loop is modified to the power inner loop, and the output of the voltage outer loop is divided by the input voltage and then multiplied by the power distribution coefficient as the new power given value to realize the power distribution function. At the same time, the automatic disturbance rejection technology is applied to the voltage outer loop to improve the response speed of the bus voltage. Finally, based on the modular concept and using GaN power switching devices, a three-input interleaved parallel Boost experimental prototype was built with a rated power of 1500 W, a rated operating frequency of 500 kHz, and a peak efficiency of 98.3%. Through experimental verification, the results show that the power distribution function can be achieved under the same input voltage or different input voltages, and it has a good dynamic response.

关键词

光伏发电 / 氮化镓 / 变换器 / 动态响应 / 高频 / 功率分配

Key words

PV power / gallium nitride / converter / dynamic response / high frequency / power distribution

引用本文

导出引用
高圣伟, 王浩, 王议锋, 王忠杰, 陈博. 多输入交错并联Boost变换器功率分配控制策略[J]. 太阳能学报. 2022, 43(12): 62-69 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0652
Gao Shengwei, Wang Hao, Wang Yifeng, Wang Zhongjie, Chen Bo. POWER DISTRIBUTION CONTROL STRATEGY OF MULTI-INPUT INTERLEAVED PARALLEL BOOST CONVERTER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 62-69 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0652
中图分类号: TM46   

参考文献

[1] 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报, 2020, 41(3): 6-33.
LIU L, CAO X, ZHANG X H, et al.Overview of the development of light and small solar/hydrogen energy drones[J]. Acta aeronautica et astronautica sinica, 2020, 41(3): 6-33.
[2] 李洪珠, 刘飞扬, 刘艳, 等. 一种新型磁集成高增益耦合电感倍压Boost变换器[J]. 电工技术学报, 2020, 35(S2): 450-460.
LI H Z, LIU F Y, LIU Y, et al.A new type of magnetic integrated high-gain coupled inductor voltage doubler Boost converter[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 450-460.
[3] 焦黎明, 徐伟强. 太阳能/氢能长航时无人机重量能量耦合分析[J]. 太阳能学报, 2020, 41(2): 152-157.
JIAO L M, XU W Q.Coupling analysis of weight and energy of solar/hydrogen energy long-endurance UAV[J]. Acta energiae solaris sinica, 2020, 41(2): 152-157.
[4] 王海新, 沈建新, 徐建国. 基于新型智能算法对太阳能无人机光伏组件电压预测控制研究[J]. 太阳能学报, 2021, 42(4): 175-180.
WANG H X, SHEN J X, XU J G.Research on predictive control of voltage of solar UAV photovoltaic modules based on new intelligent algorithms[J]. Acta energiae solaris sinica, 2021, 42(4): 175-180.
[5] 童军, 吴伟东, 李发成, 杜光辉. 基于GaN器件的高频高效LLC谐振变换器[J]. 电工技术学报, 2021, 36(S2): 635-643.
TONG J,WU W D, LI F C, DU G H.High frequency and high efficiency LLC resonant converter based on GaN devices[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 635-643.
[6] HUANG H, SAVKIN A V.Autonomous navigation of a solar-powered UAV for secure communication in urban environments with eavesdropping avoidance[J]. Future internet, 2020, 12(10): 170-184.
[7] 刘佳斌, 肖曦, 梅红伟. 基于GaN-HEMT器件的双有源桥DC-DC变换器的软开关分析[J]. 电工技术学报, 2019, 34(S2): 534-542.
LIU J B, XIAO X, MEI H W.Soft switching analysis of dual active bridge DC-DC converters based on GaN-HEMT devices[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 534-542.
[8] 徐殿国, 管乐诗, 王懿杰, 等. 超高频功率变换器研究综述[J]. 电工技术学报, 2016, 31(19): 26-36.
XU D G, GUAN L S, WANG Y J, et al.Summary of research on ultra high frequency power converters[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 26-36.
[9] 王议锋, 崔玉璐, 马小勇, 等. 一种交错并联双Buck全桥型双向并网逆变器[J]. 电工技术学报, 2019, 34(21): 4529-4539.
WANG Y F, CUI Y L, MA X Y, et al.A interleaved double buck full bridge bidirectional grid connected inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4529-4539.
[10] NASIRIAN V, DAVOUDI A, LEWIS F L, et al.Distributed adaptive droop control for DC distribution systems[J]. IEEE transactions on energy conversion, 2014, 29(4):944-956.
[11] KAMALESH M E, VIKASHINI M, PRADEEP S.Precompensated master slave control of parallel DC-DC converter in DC-microgrid[C]//International Conference on Current Trends Towards Converging Technologies Coimbatore, India, 2018.
[12] KOLLURI S, NARASAMMA N L.Analysis, modeling, design and implementation of average current mode control for interleaved boost converter[C]//IEEE International Conference on Power Electronics & Drive Systems,Kitakyushu, Japan, 2013.
[13] LIN Y, WANG Y, WANG S.Sensorless current sharing in two-phase input-parallel output-parallel DC-DC converters[C]//International Conference on Electrical Machines & Systems, Pattaya, Thailand, 2016.
[14] 闫林芳, 刘巨, 石梦璇, 等. 基于模糊逻辑算法的直流微电网复合储能系统功率自适应分配策略[J]. 中国电机工程学报, 2019, 39(9): 2658-2670.
YAN L F, LIU J, SHI M X, et al.Adaptive power allocation strategy for DC microgrid hybrid energy storage system based on fuzzy logic algorithm[J]. Proceedings of the CSEE, 2019, 39(9): 2658-2670.
[15] 蒋玮, 周赣, 王晓东, 等. 一种适用于微电网混合储能系统的功率分配策略[J]. 电力自动化设备, 2015, 35(4): 38-43.
JIANG W, ZHOU G, Wang X D, et al.A power allocation strategy for hybrid energy storage system in microgrid[J]. Power automation equipment, 2015, 35(4): 38-43.
[16] LI X Y, AI W, TIAN S P.ADRC with feedfoward control for time-delay systems[C]//IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 2018.
[17] 马幼捷, 陶珑, 周雪松, 等. 结合自抗扰的风电系统电压环模糊自适应控制[J]. 太阳能学报, 2020, 41(12): 330-337.
MA Y J, TAO L, ZHOU X S, et al.Fuzzy adaptive control of wind power system voltage loop with active disturbance rejection[J]. Acta energiae solaris sinica, 2020, 41(12): 330-337.
[18] WANG Y H, YANG Y L, DING F G.Improved ADRC control strategy in FPSO dynamic positioning control application[C]//IEEE International Conference on Mechatronics & Automation, Harbin, China, 2016.

基金

天津市科技计划(20YDTPJC01520)

PDF(2646 KB)

Accesses

Citation

Detail

段落导航
相关文章

/