基于压力脉动与声压之间的关系,利用Fluent数值模拟平台对风力机旋转过程中整机和单转子的声场和流场进行分析。对比2种模型的最大声压级位置,发现由于塔架的介入,整个模型的声场落后于流场约30°。分析塔旁y轴负向测点处压力脉动与声压级第1个峰值对应的方位角,结果发现在y/R=0.14、y/R=0.42、y/R=0.71与y/R=1时声压级(SPL)分别落后于压力脉动22°、5°、9°与18°。分析风力机旋转过程中两种模型塔附近监测点的声压级与压力脉动的变化趋势,结果表明:声压级振幅沿展向先增大后减小,在y/R=0.71处达到最大值;同样,在y/R=0.71时压力波动幅度最大。
Abstract
Based on the relationship between pressure pulsation and sound pressure, Fluent numerical simulation platform was used to analyze the sound field and flow field of the whole wind turbine and single rotor in the process of wind turbine rotation. Comparing and analyzing the maximum sound energy positions of the two models, it is found that the acoustic field of the wind turbine is hysteresis to some extent to the flow field due to the interference of the tower, and the hysteresis angle is about 30°. The pressure pulsation in the negative direction of y-axis and the distribution of sound pressure level with rotor rotation azimuth are analyzed. Comparing the azimuth of the first peak, it is found that the SPL lags behind the pressure pulsation by 22°,5°,9°and 18° respectively at the positions of y/R=0.14,y/R=0.42,y/R=0.71 and y/R=1. The variation trend of sound pressure level and pressure pulsation at monitoring points near the two model towers during wind turbine rotation is analyzed. It is found that the amplitude of SPL increases first and then decreases as it moves from the root to the tip, and reaches the maximum at y/R=0.71. Similarly, the amplitude of pressure fluctuation reaches its maximum at y/R=0.71 and the slope of the peak and valley fluctuations is at its maximum.
关键词
风电机组 /
塔架 /
旋转 /
方位角 /
风轮 /
数值模拟
Key words
wind turbines /
tower /
rotation /
azimuth /
rotor /
numerical simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MORIARTY P J, GUIDATI G, MIGLIORE P.Prediction of turbulent inflow and trailing-edge noise for wind turbines[C]//11th AIAA/CEAS Aeroacoustics Conference (26th Aeroacoustics Conference), Monterey, CA, USA, 2005.
[2] 魏自言. 基于LBM-LES方法多孔翼型气动噪声数值分析及降噪机理研究[D]. 南昌: 南昌航空大学, 2018.
WEI Z Y.Simulation of porous airfoils acoustics based on LBM-LES method and the noise reduction mechanism[D].Nanchang: Nanchang Hangkong University, 2018.
[3] 刘汉儒, 陈南树. 多孔渗透结构影响尾缘噪声的试验[J]. 航空学报, 2017, 38(6): 32-42.
LIU H R, CHEN N S.Test on effects of porous permeable section on trailing edge noise[J]. Acta aeronautica et astronautica sinica, 2017, 38(6): 32-42.
[4] LEE S.Numerical prediction of acoustic pressure radiated from large wind turbines[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Osaka Japan, 2011: 2173-2927.
[5] Toki UDA, 周贤全. 高速列车产生的低频气动噪声[J]. 国外铁道车辆, 2019, 56(3): 25-29.
Toki UDA, ZHOU X Q.Low frequency aerodynamic noise from high speed trains[J]. Foreign rolling stock, 2019, 56(3): 25-29.
[6] 朱生华. 叶尖形状对风力机功率及气动噪声影响的数值研究[D]. 呼和浩特: 内蒙古工业大学, 2014.
ZHU S H.Investigation on influence of tip shape on output power and aerodynamic noise of wind turbine[D]. Hohhot:Inner Mongolia University of Technology, 2014.
[7] KURELEK J W, KOTSONIS M, YARUSEVYCH S.Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of fluid mechanics, 2018, 853: 1-36.
[8] 王毅刚. 涡声理论在汽车A柱气动噪声优化中的应用[J]. 噪声与振动控制, 2017, 37(2): 107-112.
WANG Y G.Aerodynamic noise optimization of vehicle’s A-pillar based on vortex sound theory[J]. Noise and vibration control, 2017, 37(2): 107-112.
[9] LARATRO A, ARJOMANDI M, CAZZOLATO B, et al.Self-noise and directivity of simple airfoils during stall: an experimental comparison[J]. Applied acoustics, 2017, 127: 133-146.
[10] KEMAL K, MUSTAFA S G, HALIL H A, etal. Identification of flow phenomena over NACA 4412 wind turbine airfoil at low reynolds numbers and role of laminar separation bubble on flow evolution[J]. Energy, 2018, 144: 750-764.
[11] 苏捷, 周岱, 雷航, 等. 大型垂直轴风力机的塔影效应分析[J]. 可再生能源, 2019, 37(9): 1373-1380.
SU J, ZHOU D, LEI H, et al.Analysis of tower shadow effect on large vertical axis wind turbines[J]. Renewable energy resources, 2019, 37(9): 1373-1380.
[12] 杨从新, 张建梅, 王印, 等. 风切变下塔影效应对大型水平轴风力机气动性能的影响[J]. 排灌机械工程学报, 2021, 39(2): 144-150.
YANG C X, ZHANG J M, WANG Y, et al.Effect of tower shadow effect on aerodynamic performance of large horizontal-axis wind turbine under wind shear[J]. Journal of drainage and irrigation machinery engineering, 2021, 39(2): 144-150.
[13] 胡丹梅, 潘扬, 张建平. 大型水平轴风力机塔影效应特性研究[J]. 动力工程学报, 2018, 38(3): 237-245.
HU D M, PAN Y, ZHANG J P.Characteristic study on tower shadow effect of large-scale horizontal-axis wind turbines[J]. Journal of Chinese society power engineering, 2018, 38(3):237-245.
[14] 杨莉, 李丽, 孙凯, 等. 动态来流及塔影效应对风力机尾迹特性影响研究[J]. 计算技术与自动化, 2020, 39(3): 7-12.
YANG L, LI L, SUN K, et al.Study on influence of dynamic inflow and tower shadow effecton wake characteristics of wind turbines[J]. Computing technology and automation,2020, 39(3): 7-12.
[15] 陈进, 汪泉. 风力机翼型及叶片优化设计理论[M]. 北京: 科学出版社, 2013.
CHEN J, WANG Q.Wind turbine airfoils and blades optimization design theory[M]. Beijing: Science Press, 2013.
[16] RAMACHANDRAN R, RAMAN G, DOUGHERTY R.Wind turbine field measurements with compact microphone array using advanced beamforming methods[C]//18 th AIAA/CEAS Aeroacoustics Conference(33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, 2012.
[17] JAKOBSEN J.Infrasound emission from wind turbines[J].Journal of low frequency noise, vibration and active control, 2009, 24(3): 145-155.
[18] MARCUS E N, HARRIS W.An experimental study of wind turbine noise from blade-tower wake interaction[R]. AIAA paper 83-0691, 1983.
[19] ZAGUBIEN A, WOLNIEWICZ K.The impact of supporting tower on wind turbine noise emission[J].Applied acoustics, 2019, 155: 260-270.
[20] 邵明雪. 风轮近场旋转噪声的数值研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
SHAO M X.Numerical study on near-field rotating noise of wind turbine[D]. Hohhot: Inner Mongolia University of Technology, 2021.
[21] ZHANG C Q, GAO Z Y, CHEN Y Y, et al.Experimental determination of the dominant noise mechanism of rotating rotors using hot-wire anemometer[J]. Applied acoustics, 2021, 173: 107703.
[22] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical transactions of the royal society of London, Series A, Mathematical and physical sciences, 1969, 264(1151): 321-342.
[23] 侯熠. 偏航下风轮近尾迹声辐射路径的声阵列测量[D]. 呼和浩特: 内蒙古工业大学, 2018.
HOU Y.Acoustic array measurement of sound pathway of near wake track of yaw underwind[D]. Hohhot: Inner Mongolia University of Technology, 2018.
[24] 张星, 陈永艳, 高志鹰, 等. 水平轴风力机中心涡流动的PIV测试[J]. 太阳能学报, 2020, 41(12): 288-296.
ZHANG X, CHEN Y Y, GAO Z Y, et al.PIV test of central vortex flow in horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2020, 41(12): 288-296.
基金
内蒙古自治区自然科学基金重大项目(2018ZD08); 国家自然科学基金(51866012)