该研究旨在确定油松热压成型微观机理,并用宏观试验验证微观结果。选取离散元软件EDEM进行微观仿真模拟,用C++语言编写对应的传热应用程序设计(API),实现热压成型仿真。结果表明:颗粒位移、接触力随应变变化,在形变约为0.5时,逐渐由弹性变形转变为塑性变形阶段,模具内颗粒位移逐渐一致,整体呈现较为杂乱的状态,无上下层颗粒之分,接触力在此处突然激增。生物质成型所受应力越大接触力越杂乱,相互交错程度越明显。模具内颗粒温度上升速率的快慢与微观接触程度有关,宏观压缩程度越大,温度上升速度越快;热量传递的速度与温差相关,然而最终所需传热时间相近。
Abstract
The purpose of this study is to determine the microstructure mechanism of hot pressing of Pinus tabulaeformis waste and verify the microstructure results with experiments. The discrete element software EDEM was selected for micro simulation, and the corresponding heat transfer API was written in C++ language to realize the simulation of hot pressing. The results show that particle displacement and contact force changed with strain, the elastic deformation gradually turned into plastic deformation, the particle displacement in the mold was gradually consistent, however, the whole was disorganized and particles didn't distinguish between upper and lower layers, the contact force surged when the deformation was about 0.5. The greater the pressure on biomass briquetting, the more disordered the contact force and the more obvious the degree of interlacing. The rising rate of particle temperature in mold is related to the degree of microscopic contact, the greater the compression, the faster the temperature rises; The speed of heat transfer was related to the temperature difference, but the final heat transfer time was similar.
关键词
生物质燃料 /
热压成型 /
传热 /
离散元 /
传力 /
EDEM
Key words
biomass fuels /
hot pressing /
heat transfer /
discrete element /
stress-passing /
EDEM
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MADANYAKE B N, GAN S Y, EASTWICK C, et al.Biomass as an energy source in coal co-firing and its feasibility enhancement via pre-treatment techniques[J]. Fuel processing technology, 2017, 159: 287-305.
[2] 孙亮, 孙清, 佟玲, 等. 花生壳热压成型工艺参数的试验研究[J]. 中国农业大学学报, 2011, 16(5): 127-132.
SUN L, SUN Q, TONG L, et al.Experimental study on hot pressing process parameters of peanut shell[J]. Journal of China Agricultural University, 2011, 16(5): 127-132.
[3] 吴杰, 盛奎川. 切碎棉秆压缩成型及物理特性的试验研究[J]. 石河子大学学报, 2003, 7(3): 235-238.
WU J, SHENG K C.Experimental study on compression molding and physical properties of chopped cotton stalk[J]. Journal of Shihezi University, 2003, 7(3): 235-238.
[4] 刘璐. 生物质环模成型机成型机理与产能、能耗及磨损特性研究[D]. 天津: 河北工业大学, 2017.
LIU L.Study on molding mechanism, capacity, energy consumption and wear characteristics of biomass circular mould briquetting machine[D]. Tianjin: Hebei University of Technology, 2017.
[5] 南轩, 刘艳慧, 孙语晨, 等. 土壤渗流中渗透系数与液桥力关系研究[J]. 土壤通报, 2021, 52(2): 1-6.
NAN X, LIU Y H, SUN Y C, et al.Study on the relationship between permeability coefficient and liquid bridge force in soil seepage[J]. Chinese journal of soil science, 2021, 52(2): 1-6.
[6] 汤子锋. 生物质利用领域密集颗粒体系特性研究[D]. 杭州: 浙江大学, 2014.
TANG Z F.Characteristics of dense particle system in biomass utilization[D]. Hangzhou: Zhejiang University, 2014.
[7] 曹秒艳, 董国疆, 赵长财. 基于离散元法的固体颗粒介质传力特性研究[J]. 机械工程学报, 2011, 47(14): 62-69.
CAO M Y, DONG G J, ZHAO C C.Study on force transfer characteristics of solid particles based on discrete element method[J]. Journal of mechanical engineering, 2011, 47(14): 62-69.
[8] SHEN H, LU D, WANG D.Simulation of biomass compression in a cylindrical channel with cone angle based on EDEM[C]//State of Florida: ASABE Annual International Meeting, 2016.
[9] DATTA A, MORROW C T.Graphical and computational analysis of creep curves[J]. Transactions of the ASABE, 1983, 26(6): 1870-1874.
[10] ROBERT M, BRECHT V, BART N, et al.Modelling of thermal processes during extrusion based densification of agricultural biomass residues[J]. Applied energy, 2016, 184: 1316-1331.
[11] 于庆旭, 刘燕, 陈小兵, 等. 基于离散元的四七种子仿真参数标定与试验[J]. 农业机械学报, 2020, 51(2): 123-132.
YU Q X, LIU Y, CHEN X B, et al.Calibration and experiment of Panax notoginseng seed simulation parameters based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(2): 123-132.
[12] ODA M, IWASHITA K.Mechanics of granular materials: an introduction[M]. London: CRC Press, 2020.
[13] LOC V Q, XIANG Z.An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations[J]. Mechanics of materials, 1999, 31(4): 235-269.
[14] 李恒, 李腾飞, 高扬, 等. 基于离散元法的多层刮板式清粪机仿真优化[J]. 农业机械学报, 2013, 44(1): 131-137.
LI H, LI T F, GAO Y, et al.Simulation optimization of multi-layer scraper type excrement cleaning machine based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(1): 131-137.
[15] FAVlER J F, ABBASPOUR-FARD M H, KREMMER M, et al. Shape representation of axi-symmetrical,non-spherical particles in discrete element simulation using multi-element model particles[J]. Engineering computations, 1999, 16(4): 467-480.
[16] KOZHAR S, DOSTA M, ANTONYUK S, et al.DEM simulations of amorphous irregular shaped micrometer-sized titania agglomerates at compression[J]. Advanced powder technology, 2015, 26(3): 767-777.
[17] 许秀玉, 王明怀, 仲崇禄, 等. 不同树种木材性质及其抗台风性能[J]. 浙江农林大学学报, 2014, 31(5): 751-757.
XU X Y, WANG M H, ZHANG C L, et al.Wood properties and typhoon resistance of different tree species[J]. Journal of Zhejiang Agriculture and Forestry University, 2014, 31(5): 751-757.
[18] 王荣, 张贞, 王晖, 等. 4种待选苹果砧木与4种常见苹果砧木力学特性的比较研究[J]. 山东农业科学, 2017, 49(9): 46-50.
WANG R, ZHANG Z, WANG H, et al.Comparative study on mechanical properties of four selected apple rootstocks and four common apple rootstocks[J]. Shandong agricultural sciences, 2017, 49(9): 46-50.
[19] 金宗川, 汪稔. 瑞利波速度和碎石土工程特性的相关性试验研究[J]. 岩石力学与工程学报, 1998, 17(1): 94-100.
JIN Z C, WANG R.Experimental study on correlation between Rayleigh wave velocity and engineering properties of gravel soil[J]. Chinese journal of rock mechanics and engineering, 1998, 17(1): 94-100.
[20] 冯剑, 刘洪来, 胡英. 耗散粒子动力学的优化修正Velocity Verlet算法[J]. 化工学报, 2006, 57(8): 1841-1847.
FENG J, LIU H L, HU Y.Modified velocity Verlet algorithm for dissipative particle dynamics[J]. Journal of chemical industry and engineering, 2006, 57(8): 1841-1847.
[21] 戴伟, 郑德聪, 张静, 等. 向日葵秸秆固体燃料成型参数多响应优化设计[J]. 太阳能学报, 2019, 40(10): 2780-2788.
DAI W, ZHANG D C, ZHANG J, et al.Multi response optimization design of solid fuel forming parameters of sunflower straw[J]. Acta energiae solaris sinica, 2019, 40(10): 2780-2788.
[22] 马方, 白雪卫, 刘德军, 等. 典型生物质冷压本构模型及黏弹塑性影响因素[J]. 太阳能学报, 2017, 38(1): 98-105.
MA F, BAI X W, LIU D J, et al.Cold compression constitutive model of typical biomass and influencing factors of viscoelasticity and plasticity[J]. Acta energiae solaris sinica, 2017, 38(1): 98-105.
[23] ZHANG J, ZHENG D C, WU K, et al.The optimum conditions for preparing briquette made from millet bran using generalized distance function[J]. Renewable energy, 2019, 140: 692-703.
[24] ZHANG J, ZHENG D C, WU K, et al.Combustion characteristics of Caragana korshinskii Kom[J]. Journal of biobased materials and bioenergy, 2019, 13(1): 69-78.
基金
国家燕麦荞麦产业体系重大专项(CARS-07-D-2)