为了提升振荡翼的捕能性能,该文采用田口试验和CFD相结合的方法,对决定振荡翼捕能性能的5个特征参数进行优化。结果表明:振荡翼的特征参数对其捕能性能具有重要影响,最优和最差参数组合下振荡翼捕能效率相差137.84%。俯仰中心位置对振荡翼捕能效率影响最大,在试验样机设计中应优先考虑;所研究的5个特征参数对振荡翼捕能性能的影响程度依次为:xp/c>θ0>翼型相对厚度>h0/c>f*。通过对不同参数组合振荡翼的流场分析发现,特征参数优化的振荡翼产生的涡流始终吸附在翼型表面,从而使振荡翼获得较好的升力特性,进而在升沉运动中捕获更多的能量。
Abstract
In order to improve the energy capture performance of the oscillating wing, the Taguchi test and CFD method are used to optimize and analyze the five characteristic parameters that determine the energy capture performance of the oscillating wing. The results show that the characteristic parameters of the oscillating wing have an important effect on its energy capture performance. The difference of energy capture efficiency of the oscillating wing between the optimal and the worst parameters is 137.84%. The position of the pitching center has the greatest effect on the energy capture efficiency of the oscillating wing and should be given priority in the design of the experimental prototype. With respect to the five characteristic parameters studied, their effect degree on the energy capture performance of the oscillating wing is sortedfromthelargesttothesmallest:xp/c,θ0, the relative thickness of airfoil, h0/c, f *. By analyzing the flow field of the oscillating wing with different parameter combinations, it is found that the vortex generated by the optimized oscillating wing is always attached on the surface of the airfoil, so that the oscillating wing can obtain better lift characteristics and capture more energy in the heaving motion.
关键词
数值模拟 /
能量提取 /
田口方法 /
振荡翼
Key words
numerical simulation /
energy extraction /
Taguchi method /
oscillating wing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YOUNG J, LAI J C S, PLATZER M F. A review of progress and challenges in flapping foil power generation[J]. Progress in aerospace sciences, 2014, 67: 2-28.
[2] WANG Y, HUANG D G, HAN W, et al.Research on the mechanism of power extraction performance for flapping hydrofoils[J]. Ocean engineering, 2017, 129: 626-636.
[3] XU J N, TAN S L, GUAN D T, et al.Energy extraction performance of motion-constrained tandem oscillating hydrofoils[J]. Journal of renewable and sustainable energy, 2017, 9(4): 3193-3222.
[4] 孙光, 王勇, 谢玉东, 等. 尾缘襟翼振荡水翼的水动力特性[J]. 山东大学学报(工学版), 2020, 50(6): 23-29.
SUN G, WANG Y, XIE Y D, et al.Hydrodynamic characteristics of oscillating hydrofoil with trailing edge[J]. Journal of Shandong University (engineering science), 2020, 50(6): 23-29.
[5] BROERING T M, LIAN Y S, HENSHAW W.Numerical investigation of energy extraction in a tandem flapping wing configuration[J]. AIAA journal, 2015, 50(11): 2295-2307.
[6] 朱建阳, 张加诚, 王钊. 仿生翼型对半主动扑翼捕能性能的影响[J]. 工程力学, 2019, 36(10): 223-228, 237.
ZHU J Y, ZHANG J C, WANG Z.The influence of bionic airfoil on power extraction performance of semi-active flapping wing[J]. Engineering mechanics, 2019, 36(10): 223-228, 237.
[7] CHEN Y L, ZHAN J P, WU J, et al.A fully-activated flapping foil in wind gust: energy harvesting performance investigation[J]. Ocean engineering, 2017, 138: 112-122.
[8] WU J, CHEN Y L, ZHAO N, et al.Influence of stroke deviation on the power extraction performance of a fully-active flapping foil[J]. Renewable energy, 2016, 94: 440-451.
[9] KINSEY T, DUMAS G.Parametric study of an oscillating airfoil in a power-extraction regime[J]. AIAA journal, 2008, 46(6): 1318-1330.
[10] 张来超, 黄典贵. 雷诺数对扑翼获能特性的影响[J]. 太阳能学报, 2018, 39(3): 643-650.
ZHANG L C, HUANG D G.Effects of reynolds number on oscillating-airfoil power generator[J]. Acta energiae solaris sinica, 2018, 39(3): 643-650.
[11] 谢玉东, 王勇, 马鹏磊, 等. 水翼振荡运动捕获潮流能的机理研究[J]. 浙江大学学报(工学版), 2018, 52(1): 65-72.
XIE Y D, WANG Y, MA P L, et al.Energy-capturing mechanism of hydrofoil oscillating motion[J]. Journal of zhejiang university (engineering science), 2018, 52(1): 65-72.
[12] KINSEY T, DUMAS G.Optimal operating parameters for an oscillating foil turbine at reynolds number 500,000[J]. AIAA journal, 2014, 52(9): 1885-1895.
[13] 张硕, 李臻, 朱忠祥, 等. 多因素影响下拖拉机侧向稳定性模型实验[J]. 农业机械学报, 2017, 48(10): 358-363.
ZHANG S, LI Z, ZHU Z X, et al.Scale model experiment on lateral stability of tractor affected by multi-factors[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 358-363.
[14] 肖宇, 叶晓琰, 周岭, 等. 基于叶轮子午面田口试验的潜水泵水力优化设计[J]. 水电能源科学, 2020, 38(11): 164-168.
XIAO Y, YE X Y, ZHOU L, et al.Hydraulic optimization design of submersible pump based on the Taguchi test of impeller meridian surface[J]. Water resources and power, 2020, 38(11): 164-168.
[15] ZHU J Y, ZHU M K, ZHANG T, et al.Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil[J]. Energy, 2021, 227(1): 120458.