构建先进绝热压缩空气储能(AA-CAES)与内燃机(ICE)和有机朗肯循环(ORC)深度耦合的综合能源系统(IES-ORC-CAES),通过改变ICE的部分负荷率、ORC的烟气占比、低温烟气温度、电制冷占比和电价低谷期的储电量,实现了系统能量根据用户负荷的动态调整。基于K-均值算法将典型年负荷聚类为典型日场景集,考虑分时电价,以经济性、环保性和能效性为目标,采用并行式的遗传算法对IES-ORC-CAES和参考系统展开优化。结果表明:不同目标下,IES-ORC-CAES系统的年化运行成本、CO2排放量和一次能源消耗量分别比参考系统降低了10.43%、8.19%和1.80%。此外,通过协同调节ICE、ORC和AA-CAES的出力,IES-ORC-CAES系统中AA-CAES和ORC在典型日1分别承担了用户电负荷的12.26%和0.10%,对减小电网压力和增加系统供能灵活性有重要意义。
Abstract
In this paper, an integrated energy system (IES-ORC-CAES) with advanced adiabatic compressed air energy storage (AA-CAES), internal combustion engine (ICE) and organic Rankine cycle (ORC) is constructed. By changing the partial load rate of ICE, the proportion of flue gas in ORC, the temperature of low-temperature flue gas, the proportion of electric refrigeration and the electricity storage capacity during the valley electricity price period, the dynamic adjustment of system energy according to the user load requirements is realized. Based on the K-means algorithm, the typical annual load is clustered into a typical daily scenario set. Considering the timeofuseelectricity price, the parallel genetic algorithm is used to optimize IES-ORC-CAES and reference system with economy, environmental protection and energy efficiency as objectives.The results show that the annual operation cost, CO2 emission and primary energy consumption of IES-ORC-CAES system are reduced by 10.43%, 8.19% and 1.80% respectively compared with the reference system.In addition, by coordinating the output of ICE, ORC and AA-CAES, AA-CAES and ORC in IES-ORC-CAES system bear 12.26% and 0.10% of users’ electricity load on typical day 1, which is of great significance for reducing grid pressure and increasing system energy supply flexibility.
关键词
先进绝热压缩空气储能 /
有机朗肯循环 /
并行式的遗传算法 /
综合能源系统 /
协同优化 /
性能分析
Key words
AA-CAES /
ORC /
parallel genetic algorithm /
collaborative optimization /
performance analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈皓勇, 陈思敏, 陈锦彬, 等. 面向综合能源系统建模与分析的能量网络理论[J]. 南方电网技术, 2020, 14(2): 62-74.
CHEN H Y, CHEN S M, CHEN J B, et al.Energy network theory for modeling and analysis of integrated energy systems[J]. Southern power grid technology, 2020, 14(2): 62-74.
[2] WU D, LIU Z J, HAN Z H, et al.Thermodynamic performance analyses and collaborative optimization for a novel integrated energy system coupled with organic Rankine cycle[J]. Energy conversion and management, 2020, 225: 113484.
[3] 范宏, 鲁家阳, 陆骁霄. 考虑激励型需求响应的多区域综合能源系统协同规划[J/OL]. 电测与仪表: 1-9[2021-06-07] .
FAN H, LU J Y, LU X X.Collaborative planning of multi-region integrated energy system considering incentive demand response[J/OL]. Electrical measurement and instrumentation: 1-9[2021-06-07].
[4] 董光朔. 微型压缩空气储能冷热电联供系统设计与评价研究[D]. 济南: 山东大学, 2020.
DONG G S.Research on design and evaluation of miniature compressed air energy storage cogeneration system[D]. Ji’nan: Shandong University, 2020.
[5] PAZOUKI S, HAGHIFAM M R.Optimal planning and scheduling of energy hub in presence of wind, storage and demand response under uncertainty[J]. International journal of electrical power & energy systems, 2016, 80:219-239.
[6] WANG H Y, ZHANG C H, LI K, et al.Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage[J]. Energy, 2021, 221: 119777.
[7] YAO E R, WANG H R, WANG L G, et al.Thermo-economic optimization of a combined cooling, heating and power system based on small-scale compressed air energy storage[J]. Energy conversion and management, 2016, 118: 377-386.
[8] WANG X S, YANG C, HUANG M M, et al.Multi-objective optimization of a gas turbine-based CCHP combined with solar and compressed air energy storage system[J]. Energy conversion and management, 2018, 164: 93-101.
[9] JIANG R H, CAI Z D, PENG K W, et al.Thermo-economic analysis and multi-objective optimization of polygeneration system based on advanced adiabatic compressed air energy storage system[J]. Energy conversion and management, 2021, 229: 113724.
[10] 尹斌鑫, 苗世洪, 李姚旺, 等. 先进绝热压缩空气储能在综合能源系统中的经济性分析方法[J]. 电工技术学报, 2020, 35(19): 4062-4075.
YIN B X, MIAO S H, LI Y W, et al.Economic analysis method of advanced adiabatic compressed air energy storage in integrated energy system[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4062-4075.
[11] SADREDDINI A, FANI M, AGHDAM M A, et al.Exergy analysis and optimization of a CCHP system composed of compressed air energy storage system and ORC cycle[J]. Energy conversion and management, 2018, 157: 111-122.
[12] MAGO P J, HUEFFED A, CHAMRA L M.Analysis and optimization of the use of CHP-ORC systems for small commercial buildings[J]. Energy and buildings, 2010, 42(9): 1491-1498.
[13] ZHU Y L, LI W Y, SUN G Z.Thermodynamic analysis of evaporation temperature glide of zeotropic mixtures on the ORC-CCHP system integrated with ejector and heat pump[J]. Energy procedia, 2019, 158: 1632-1639.
[14] 罗城鑫, 张海珍, 王明晓, 等. 内燃机缸套水余热有机朗肯循环发电系统设计与优化[J]. 节能, 2020, 39(7):33-38.
LUO C X, ZHANG H Z, WANG M X, et al.Design and optimization of organic Rankine cycle power generation system with waste heat from cylinder liner water of internal combustion engine[J]. Energy saving, 2020, 39(7): 33-38.
[15] HAN Z H, ZHANG H,WU D, et al.Performance optimization for a novel combined cooling, heating and power-organic Rankine cycle system with improved following electric load strategy based on different objectives[J]. Energy conversion and management, 2020, 221: 113294.
[16] HAJABDOLLAHI H.Investigating the effects of load demands on selection of optimum CCHP-ORC plant[J]. Applied thermal engineering, 2015, 87: 547-558.
[17] 任洪波, 周奥林, 吴琼, 等. 基于不同运行模式的CCHP-ORC系统运行仿真与性能评估[J]. 热能动力工程, 2019, 34(10): 1-9.
REN H B, ZHOU A L, WU Q, et al.CCHP-ORC system operation simulation and performance evaluation based on different operation modes[J]. Thermal power engineering, 2019, 34(10): 1-9.
[18] FANG F, WEI L, LIU J Z, et al.Complementary configuration and operation of a CCHP-ORC system[J]. Energy, 2012, 46(1): 211-220.
[19] KANG L G, YANG J H, AN Q S, et al.Complementary configuration and performance comparison of CCHP-ORC system with a ground source heat pump under three energy management modes[J]. Energy conversion and management,2017, 135: 244-255.
[20] URIS M, LINARES J I, ARENAS E.Feasibility assessment of an Organic Rankine Cycle (ORC) cogeneration plant (CHP/CCHP) fueled by biomass for a district network in mainland Spain[J]. Energy, 2017, 133: 969-985.
[21] ANEKE M, WANG M.Energy storage technologies and real life applications-a state of the art review[J]. Applied energy, 2016, 179: 350-377.
[22] ZAKERI B, SYRI S.Electrical energy storage systems: a comparative life cycle cost analysis[J]. Renewable and sustainable energy reviews, 2015, 42: 569-596.
[23] LYU X Q, WU Y B, LIAN J, et al.Energy management of hybrid electric vehicles:a review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy conversion and management, 2020, 205: 112474.
[24] 林世平. 燃气冷热电分布式能源技术应用手册[M]. 北京: 中国电力出版社, 2014: 26-98.
LIN S P.Application manual of gas cooling, heating and power distributed energy technology[M]. Beijing: China Electric Power Press, 2014: 26-98.
[25] 李龙锡. 楼宇及区域型分布式能源系统效益评价研究[D]. 大连: 大连理工大学, 2017.
LI L X.Research on benefit evaluation of building and regional distributed energy system[D]. Dalian: Dalian University of Technology, 2017.
[26] 金红光, 郑丹星, 徐建中. 分布式冷热电联产系统装置及应用[M]. 北京: 中国电力出版社, 2010: 90-147.
JIN H G, ZHENG D X, XU J Z.Device and application of distributed CCHP system[M]. Beijing: China Electric Power Press, 2010: 90-147.
基金
广东省分布式能源系统重点实验室(2020B1212060075)