基于生成对抗网络多变量风电时间序列异常值处理

徐昊, 王永生, 许志伟, 武煜昊, 陈振

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 300-311.

PDF(4831 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4831 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 300-311. DOI: 10.19912/j.0254-0096.tynxb.2021-0685

基于生成对抗网络多变量风电时间序列异常值处理

  • 徐昊1,2, 王永生1~3, 许志伟1,2,4, 武煜昊1,2, 陈振1,2
作者信息 +

OUTLIER PROCESSING OF MULTIVARIABLE WIND POWER TIME SERIES BASED ON GENERATIVE ADVERSARIAL NETWORK

  • Xu Hao1,2, Wang Yongsheng1-3, Xu Zhiwei1,2,4, Wu Yuhao1,2, Chen Zhen1,2
Author information +
文章历史 +

摘要

将孤立森林算法应用于风电数据的异常值检测,利用改进的GRUI神经单元基于WGAN网络进行缺失值插补。在内蒙古风电场的真实数据集上验证了所提方法的有效性,并与KNN、GAN等方法进行对比,验证了模型的有效性,具有更好的插补精度。

Abstract

The rapid development and original data lack of wind power generation have brought difficulties and challenges to wind power prediction. Accurate and complete original data is the basis of wind power research. The isolated forest algorithm is applied to the outlier detection of wind power data. The improved GRUI neural unit is used to perform missing value interpolation based on the WGAN network. The effectiveness of the proposed method is verified on the real data set from the Inner Mongolia wind farm and compared with KNN, GAN and other methods. As the results, the model has better interpolation accuracy.

关键词

风力发电 / 时间序列 / 对抗生成网络 / 异常检测 / 缺失插补

Key words

wind power / time series / generative adversarial network / outlier detection / missing interpolation

引用本文

导出引用
徐昊, 王永生, 许志伟, 武煜昊, 陈振. 基于生成对抗网络多变量风电时间序列异常值处理[J]. 太阳能学报. 2022, 43(12): 300-311 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0685
Xu Hao, Wang Yongsheng, Xu Zhiwei, Wu Yuhao, Chen Zhen. OUTLIER PROCESSING OF MULTIVARIABLE WIND POWER TIME SERIES BASED ON GENERATIVE ADVERSARIAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 300-311 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0685
中图分类号: TP391.1   

参考文献

[1] RAHBAR K, CHAI C C, ZHANG R.Energy cooperation optimization in microgrids with renewable energy integration[J]. IEEE transactions on smart grid, 2016, 9(2): 1482-1493.
[2] BLOESS A, SCHILL W P, ZERRAHN A.Power-to-heat for renewable energy integration: a review of technologies, modeling approaches, and flexibility potentials[J]. Applied energy, 2018, 212: 1611-1626.
[3] 刘怡彤. 考虑新能源不确定性的全清洁能源区域电网的主从博弈研究[D]. 西安: 西安理工大学, 2019.
LIU Y T.Master-slave game study of clean energy regional power grid considering the uncertainty of new energy sources[D]. Xi’an: Xi’an University of Technology, 2019.
[4] 马彦宏, 汪宁渤, 何世恩, 等. 酒泉千万千瓦级风电基地发展现状与展望[J]. 电网与清洁能源, 2009, 25(11): 76-79.
MA Y H, WANG N B, HE S E, et al.The current situation and prospect for Jiuquan 10 GW wind power base[J]. Power system and clean energy, 2009, 25(11): 76-79.
[5] 田英杰, 苏运, 郭乃网, 等 . 基于时间序列嵌入的电力负荷预测方法[J]. 计算机应用与软件, 2018, 35(11): 55-60, 73.
TIAN Y J, SU Y, GUO N W, et al.Electricity load forecasting method based on time series embedding[J]. Computer applications and software, 2018, 35(11): 55-60, 73.
[6] 赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化, 2014, 38(21): 39-46.
ZHAO Y N, LIN Y, ZHU Q W.Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms[J]. Automation of electric power systems, 2014, 38(21): 39-46.
[7] 陈伟, 吴布托, 裴喜平. 风电机组异常数据预处理的分类多模型算法[J].电力系统及其自动化学报, 2018, 30(4): 137-143.
CHEN W, WU B T, PEI X P.Classification multi-model algorithm for abnormal data preprocessing in wind turbines[J]. Proceedings of the CSU-EPSA, 2018, 30(4): 137-143.
[8] 沈小军, 付雪姣, 周冲成, 等. 风电机组风速-功率异常运行数据特征及清洗方法[J]. 电工技术学报, 2018, 33(14): 3353-3361.
SHEN X J, FU X J, ZHOU C C, et al.Characteristics of outliers in wind speed-power operation data of wind turbines and its cleaning method[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3353-3361.
[9] 金文进, 杨武. 异常检测技术研究综述[J]. 软件导刊, 2008(1): 10-13.
JIN W J, YANG W.A summary of anomaly detection for IDS[J]. Software guide, 2008(1): 10-13.
[10] KIRAN B R, THOMAS D M, PARAKKAL R.An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[J]. Journal of imaging, 2018, 4(2): 36.
[11] SHARMA R, GULERIA A, SINGLA R K.An overview of flow-based anomaly detection[J]. International journal of communication networks and distributed systems, 2018, 21(2): 220-240.
[12] 沈小军, 周冲成, 吕洪. 基于运行数据的风电机组间风速相关性统计分析[J]. 电工技术学报, 2017, 32(16): 265-274.
SHEN X J, ZHOU C C, LYU H.Statistical analysis of wind speed correlation between wind turbines based on operating data[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 265-274.
[13] KUSIAK A, ZHENG H Y, SONG Z.Models for monitoring wind farm power[J]. Renewable energy, 2009, 34(3): 583-590.
[14] LIU F T, TING K M, ZHOU Z H.Isolation forest[C]//Eighth IEEE International Conference on Data Mining, Pisa, Italy, 2008: 413-422.
[15] LIU F T, TING K M, ZHOU Z H.Isolation-based anomaly detection[J]. ACM transactions on knowledge discovery from data, 2012, 6(1): 1-39.
[16] QIN Y, LOU Y S.Hydrological time series anomaly pattern detection based on isolation forest[C]//IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference(ITNEC), Chengdu, China, IEEE, 2019: 1706-1710.
[17] LITTLE R J A, RUBIN D B. Statistical analysis with missing data[M]. New York: John Wiley & Sons, 2019.
[18] BATISTA G E, MONARD M C.An analysis of four missing data treatment methods for supervised learning[J]. Applied artificial intelligence, 2003, 17(5-6): 519-533.
[19] HASTIE T, MAZUMDER R, LEE J D, et al.Matrix completion and low-rank SVD via fast alternating least squares[J]. Journal of machine learning research, 2015, 16(1): 3367-3402.
[20] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[21] HUANG X, LI Y, POURSAEED O, et al.Stacked generative adversarial networks[C]//Computer Vision and Pattern Recognition(CVPR) Conference, Honolulu, Hawaii, USA, 2017.
[22] LEDIG C, THEIS L, HUSZAR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 2017: 4681-4690.
[23] YU L T, ZHANG W N, WANG J, et al.Seqgan: sequence generative adversarial nets with policy gradient[C]//Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017.
[24] YOON J, JORDON J, SCHAAR M.Gain: missing data imputation using generative adversarial nets[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5689-5698.
[25] 朱倩雯, 叶林, 赵永宁, 等. 风电场输出功率异常数据识别与重构方法研究[J]. 电力系统保护与控制, 2015, 43(3): 38-45.
ZHU Q W, YE L, ZHAO Y N, et al.Methods for elimination and reconstruction of abnormal power data in wind farms[J]. Power system protection and control, 2015, 43(3): 38-45.
[26] AMMAD M, RAMLI A.Cubic B-Spline curve interpolation with arbitrary derivatives on its data points[C]//2019 23rd International Conference in Information Visualization—Part II, Adelaide, SA, Australia, 2019: 156-159.
[27] WANG J D, YANG F, DU X H.Microgrid harmonic and interharmonic analysis algorithm based on cubic spline interpolation signal reconstruction[C]//IEEE PES Innovative Smart Grid Technologies-Asia, Tianjin, 2012: 1-5.
[28] 杨茂, 翟冠强, 李大勇. 基于风速升降特性及支持向量机理论的异常数据重构算法[J]. 电力系统保护与控制, 2018, 46(16): 31-37.
YANG M, ZHAI G Q, LI D Y.An algorithm of abnormal data reconstruction based on RISE-FALL-feature of the wind speed and support vector machine[J]. Power system protection and control, 2018, 46(16): 31-37.
[29] LUO Y H, CAI X R, ZHANG Y, et al.Multivariate time series imputation with generative adversarial networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, NeurIPS, Montréal, Canada, 2018: 1603-1614.
[30] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[31] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP), Doha, Qatar, 2014: 1724-1734.
[32] LEE D Y, HORVITZ E.Predicting mortality of intensive care patients via learning about hazard[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, California, USA, 2017: 4953-4954.
[33] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017, 70: 214-223.
[34] SCHLEGL T, SEEBOCK P, WALDSTEIN S M, et al.Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//International Conference on Information Processing in Medical Imaging, Boone, NC, USA, Springer, 2017.

基金

国家自然科学基金(61962045); 内蒙古自治区高等学校科学研究项目(NJZY21321); 内蒙古自治区关键技术攻关计划(2020GG0094); 内蒙古自治区自然科学基金(2021LHMS06001)

PDF(4831 KB)

Accesses

Citation

Detail

段落导航
相关文章

/