非反向Buck-Boost变换器在可再生能源发电系统、储能系统等电压变化范围较宽的场合得到广泛应用。传统四边形控制方法,能实现非反向Buck-Boost变换器各开关管的ZVS,但存在如下问题:1)大的电感电流引起的较大的导通损耗;2)各模式之间切换引起的输出电压波动;3)需要离线预先计算,使用多维查找表和线性插值法,无在线检测实时计算的闭环,整体控制复杂。该文提出的多模式定频双向ZVS充放电控制策略,解决了以上3个问题。首先,提出多模式定频ZVS恒压放电控制策略,不需要添加任何额外的有源或无源器件,通过将整个宽输入电压范围分成3个模式,并独立分析每个模式的特点,可增加控制条件以简化计算过程,同时实现各模式的在线实时恒压闭环和通态损耗最小ZVS。无需使用多维查找表和线性插值法,整体控制简单容易实现。其次,提出多模式平滑切换控制策略,可保证在模式切换时各开关管占空比跳变前后,闭环输出始终保持稳定。然后,提出多模式定频ZVS恒流充电控制策略,实现了非反向Buck-Boost变换器的双向ZVS充放电控制。最后,给出各模式区间划分的理论依据和电感参数的计算原理,并搭建500 W的实验样机验证了所提出方案的有效性。
Abstract
Noninverting Buck-Boost converters are widely used in renewable energy power generation systems, energy storage systems and other occasions with a wide voltage variation range. The conventional quadrangle control method can realize ZVS of all switches in noninverting Buck-Boost converter, but it has the following problems: 1) the large conduction loss caused by large inductor current; 2) the output voltage fluctuation caused by mode switching; 3) the use of lookup table and linear interpolation makes the calculation amount large and the overall control complex. The proposed multimode constant frequency ZVS control strategy solves the three problems. Firstly, without any additional active or passive components, by dividing the entire wide input voltage range into three modes, after independently analyzing the characteristics of each mode, the control conditions can be added to simplrfy the calculation process, and the online realtime closed-loop and minimum conduction loss ZVS of each mode can be realized at the same time. There is no need to use multi-dimensional lookup table and linear interpolation, and the overall control is simple and easy to achieve. Secondly, a multimode smooth switching control strategy is proposed, which can ensure that the output voltage is always stable before and after the duty cycle of each switch jumps during mode switching. Then, a multimode constant frequency ZVS constant current charging control strategy is proposed to realize bidirectional ZVS charging and discharging control of noninverting Buck-Boost converter. Finally, the theoretical basis for division of each mode and the calculation principle of inductor parameter is provided, and a 500 W experimental prototype is built to verify the effectiveness of the proposed scheme.
关键词
DC-DC变换器 /
ZVS /
移相 /
数字控制系统 /
模式切换 /
储能
Key words
DC-DC converter /
ZVS /
phase shift /
digital control system /
mode switching /
energy storage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘硕, 高莹, 辛迪熙, 等. 非隔离储能型三端口开关升压变换器在光伏系统中应用的研究[J]. 太阳能学报, 2021, 42(7): 139-145.
LIU S, GAO Y, XIN D X, et al.Research on non-isolated energy storage type three-port switching boost converter in photovoltaic system application[J]. Acta energiae solaris sinica, 2021, 42(7): 139-145.
[2] 李鑫, 朱浩宇, 张微微, 等. 宽范围输入下的Buck/Boost-DAB级联变换器建模及控制[J]. 太阳能学报, 2021, 42(5): 67-73.
LI X, ZHU H Y, ZHANG W W, et al.Modeling and control of Buck/Boost-DAB cascaded converters with wide range inputs[J]. Acta energiae solaris sinica, 2021, 42(5): 67-73.
[3] 郝耀宗. 高效率四开关升降压变换器的控制技术研究[D]. 北京: 北方工业大学, 2021.
HAO Y Z.Research on control technology of high- efficiency four-switch buck-boost converter[D]. Beijing: North China University of Technology, 2021.
[4] 贾燕冰, 田晋杰, 任春光, 等. 基于变换器级联的直流微电网混合储能系统及控制[J]. 太阳能学报, 2020, 41(5): 273-280.
JIA Y B, TIAN J J, REN C G, et al.Research on DC microgrid hess based on converter cascade structure[J]. Acta energiae solaris sinica, 2020, 41(5): 273-280.
[5] YAO C, RUAN X B, CAO W J, et al.A two-mode control scheme with input voltage feed-forward for the two-switch buck-boost DC-DC converter[J]. IEEE transactions on power electronics, 2013, 29(4): 2037-2048.
[6] 孙孝峰, 申彦峰, 霍庆颖. PWM加双移相控制双向Buck-Boost集成三端口DC-DC变换器[J]. 太阳能学报, 2016, 37(5): 1180-1189.
SUN X F, SHEN Y F, HUO Q Y.Bidirectional buck-Boost integrated three port DC-DC converter with PWM plus dual phase shift control[J]. Acta energiae solaris sinica, 2016, 37(5): 1180-1189.
[7] 姚川, 阮新波, 曹伟杰, 等. 双管Buck-Boost变换器的输入电压前馈控制策略[J]. 中国电机工程学报, 2013, 33(21): 36-44.
YAO C, RUAN X B, CAO W J, et al.An input voltage feed forward control strategy for two-switch Buck-Boost dc-DC converters[J]. Proceedings of the CSEE, 2013, 33(21): 36-44.
[8] 孙孝峰, 周杨, 马永正, 等. Buck-Boost双向变换器无过零检测TCM控制研究[J]. 太阳能学报, 2017, 38(7): 1828-1837.
SUN X F, ZHOU Y, MA Y Z, et al.Bidirectional Buck-Boost converter TCM control without zero-crossing detection[J]. Acta energiae solaris sinica, 2017, 38(7): 1828-1837.
[9] CHENG X, ZHANG Y, YIN C.A zero voltage switching topology for non-inverting buck-boost converter[J]. IEEE transactions on circuits & systems II: express briefs, 2019, 66(9): 1557-1561.
[10] ZHANG Y, CHENG X, YIN C.A soft-switching non-inverting buck-boost converter with efficiency and performance improvement[J]. IEEE transactions on power electronics, 2019, 34(12): 11526-11530.
[11] CONG L, LIU J, LEE H.A high-efficiency low-profile zero-voltage transition synchronous non-inverting buck-boost converter with auxiliary-component sharing[J]. IEEE transactions on circuits & systems I: regular papers, 2019, 66(1): 438-449.
[12] LEE H S, YUN J J.High-efficiency bidirectional buck-boost converter for photovoltaic and energy storage systems in a smart grid[J]. IEEE transactions on power electronics, 2019, 34(5): 4316-4328.
[13] HAN W J, CORRADINI L.Control technique for wide-range ZVS of bidirectional dual-bridge series resonant DC-DC converters[C]//2018 IEEE 19th Workshop on Control and Modeling for Power Electronics, Padua, Italy, 2018.
[14] HAN W J, CORRADINI L.Wide-range ZVS control technique for bidirectional dual-bridge series-resonant DC-DC converters[J]. IEEE transactions on power electronics, 2019, 34(10): 10256-10269.
[15] WAFFLER S, KOLAR J W.A novel low-loss modulation strategy for high-power bi-directional buck+boost converters[C]//2007 7th Internatonal Conference on Power Electronics, Daegu, South Korea, 2007.
[16] WAFFLER S, KOLAR J W.A novel low-loss modulation strategy for high-power bidirectional buck+boost converters[J]. IEEE transactions on power electronics, 2009, 24(6): 1589-1599.
[17] ZHOU Z J, LI H Y, WU X K.A constant frequency ZVS control system for the four-switch Buck-Boost DC-DC converter with reduced inductor current[J]. IEEE transactions on power electronics, 2019, 34(7): 5996-6003.
[18] LIU Q, QIAN Q S, ZHENG M, et al.An improved quadrangle control method for four-switch buck-boost converter with reduced loss and decoupling strategy[J]. IEEE transactions on power electronics, 2021, 36(9): 10827-10841.
基金
河北省自然科学基金重点项目(E2021203162); 河北省重点研发计划(19214405D)