In this paper, the recent research on hydrogen production from solar methane reforming is reviewed. Firstly, the basic characteristics of methane reforming reaction are introduced from the point of technological process, thermodynamics and kinetics of hydrogen production from methane reforming reaction. Secondly, the research progress of solar energy methane reforming technology in recent years is reviewed from two aspects: the development of high efficiency and low cost catalyst system and the research of new reactor performance. Finally, the future development direction of methane reforming technology based on solar energy is given from the aspects of development and research of high efficiency catalyst, design of new reactor and cost control of hydrogen production.
Lei Yu, Yuan Xi, Wang Ying, Huang Jing, Liu Yu.
RESEARCH PROGRESS OF HYDROGEN PRODUCTION FROM METHANE REFORMING BASED ON SOLAR ENERGY[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 154-160 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0715
中图分类号:
TK519
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许红星. 我国能源利用现状与对策[J]. 中外能源, 2010, 15(1): 3-14. XU H X.Present situation and countermeasure of energy utilization in our country[J]. Sino-global energy, 2010, 15(1): 3-14. [2] 黄湘. 国际太阳能资源及太阳能热发电趋势[J]. 华电技术, 2009, 31(12): 1-3, 7, 77. HUANG X. International solar energy resources and solar thermal power generation trends[J]. Huadian technology, 2009, 31(12):1-3, 7, 77. [3] SARWAR J, GEORGAKIS G, LA-CHANCE R, et al.Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar energy, 2014, 100: 179-194. [4] 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8. LI J L, LI G H, MA S L, et al.Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal power generation, 2021, 50(6): 1-8. [5] 张家盛, 王锋, 彭隆肇, 等. 管式反应器中内热源加热的甲醇水蒸气重整制氢特性[J]. 太阳能学报, 2021, 42(7): 497-502. ZHANG J S, WANG F, PENG L Z, et al.Methanol steam reforming for hydrogen production in tube reactor heated by internal heat source[J]. Acta energiae solaris sinica, 2021, 42(7): 497-502. [6] 王涵, 李世安, 杨发财, 等. 氢气制取技术应用现状及发展趋势分析[J]. 现代化工, 2021, 41(2): 23-27. WANG H, LI S A, YANG F C, et al.Analysis of application status and development trend of hydrogen production technology[J]. Modern chemical industry, 2021, 41(2): 23-27. [7] 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11):4921-4929. XU K D, XIE T, WANG S, et al.Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system[J]. Chemical industry and engineering progress, 2019, 38(11): 4921-4929. [8] HOGUET J C, KARAGIANNAKIS G P, VALLA J A, et al.Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes[J]. International journal of hydrogen energy, 2009, 34(11): 4953-62. [9] LIU K, SONG C S, SUBRAMANI V.Hydrogen and syngas production and purification technologies[M/OL]. https://onlinelibrary.wiley.com, 2009. [10] SUN Y, RITCHIE T, HLA S S, et al.Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications[J]. Journal of natural gas chemistry, 2011, 20(6): 568-76. [11] TOMISHIGE K, CHEN Y G, FUJIMOTO K.Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts[J]. Journal of catalysis, 1999, 181(1): 91-103. [12] GAO Y C, JIANG J G, MENG Y, et al.A novel nickel catalyst supported on activated coal fly ash for syngas production via biogas dry reforming[J]. Renewable energy, 2020, 149: 786-793. [13] 崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-30, 37. CUI K K, ZHOU G L, XIE H M.Research progress of carbon dioxide methanation catalysts[J]. Chemical industry and engineering progress, 2015, 34(3): 724-30, 37. [14] 徐占林, 毕颖丽, 甄开吉. 甲烷催化二氧化碳重整制合成气反应研究进展[J]. 化学进展, 2000(2): 121-130. XU Z L, BI Y L, ZHEN K J.Research progress of methane catalytic carbon dioxide reforming to syngas[J]. Chemical industry and engineering progress, 2000(2): 121-130. [15] LIANG T Y, RAJA D S, CHIN K C, et al.Bimetallic metal-organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming[J]. ACS applied materials & interfaces, 2020, 12(13): 15183-15193. [16] WEI Y Q, LIU X, HAIDAR N, et al.CeNixAl0.5HzOy nano-oxyhydrides for H2 production by oxidative dry reforming of CH4 without carbon formation[J]. Applied catalysis A: general, 2020, 594: 117439. [17] KODAMA T.High-temperature solar chemistry for converting solar heat to chemical fuels[J]. Progress in energy and combustion science, 2003, 29(6): 567-97. [18] LEMONIDOU A A, VASALOS I A.Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst[J]. Applied catalysis A: general, 2002, 228(1): 227-35. [19] BERMAN A, KARN R K, EPSTEIN M.Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides[J]. Applied catalysis A: general, 2005, 282(1): 73-83. [20] SEHESTED J.Four challenges for nickel steam-reforming catalysts[J]. Catalysis today, 2006, 111(1): 103-110. [21] CHUBB T A.Characteristics of CO2 CH4 reforming-methanation cycle relevant to the solchem thermochemical power system[J]. Solar energy, 1980, 24(4): 341-345. [22] 万超, 安越, 孔文静, 等. 乙基咔唑在Ru/C催化剂下催化加氢性能研究[J]. 太阳能学报, 2014, 35(2): 351-354. WAN C, AN Y, KONG W J, et al.Study of hydrogenation of N-ethylcabazole over Ru/C catalyst[J]. Acta energiae solaris sinica, 2014, 35(2): 351-354. [23] ANIKEEV V I, KIRILLOV V A.Basic design principles and some methods of investigation of catalytic reactors-receivers of solar radiation[J]. Solar energy materials, 1991, 24(1): 633-646. [24] ANIKEEV V I, PARMON V N, KIRILLOV V A, et al.Theoretical and experimental studies of solar catalytic power plants based on reversible reactions with participation of methane and synthesis gas[J]. International journal of hydrogen energy, 1990, 15(4): 275-286. [25] HOGAN R E, SKOCYPEC R D, DIVER R B, et al.A direct absorber reactor/receiver for solar thermal applications[J]. Chemical engineering science, 1990, 45(8): 2751-2758. [26] LEVY M, RUBIN R, ROSIN H, et al.Methane reforming by direct solar irradiation of the catalyst[J]. Energy, 1992, 17(8): 749-56. [27] LEVY M, ROSIN H, LEVITAN R.Chemical reactions in a solar furnace by direct solar irradiation of the catalyst[J]. Journal of solar energy engineering, 1989, 111(1): 96-97. [28] KIRILLOV V A.Catalyst application in solar thermochemistry[J]. Solar energy,1999, 66(2): 143-149. [29] 杨旸, 崔一尘, 蔡宁生. 天然气裂解制氢的研究进展[J]. 太阳能学报, 2006, 27(10): 967-972. YANG Y, CUI Y C, CAI N S.Development in the research of natural gas decomposition into hydrogen[J]. Acta energiae solaris sinica, 2006, 27(10): 967-972. [30] BUCK R, MUIR J F, HOGAN R E.Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project[J]. Solar energy materials, 1991, 24(1): 449-63. [31] WÖRNER A, TAMME R. CO2 reforming of methane in a solar driven volumetric receiver-reactor[J]. Catalysis today, 1998, 46(2): 165-174. [32] ANIKEEV V I, BOBRIN A S, ORTNER J, et al.Catalytic thermochemical reactor/receiver for solar reforming of natural gas: design and performance[J]. Solar energy, 1998, 63(2): 97-104. [33] KODAMA T, MORIYAMA T, SHIMOYAMA T, et al.Ru/Ni-Mg-O catalyzed SiC-foam absorber for solar reforming receiver-reactor[J]. Journal of solar energy engineering, 2006, 128(3): 697-705. [34] KARNI J, KRIBUS A, RUBIN R, et al.The “Porcupine”: a novel high-flux absorber for volumetric solar receivers[J]. Journal of solar energy engineering, 1998, 120(2): 85-95. [35] BERMAN A, KARN R K, EPSTEIN M.A new catalyst system for high-temperature solar reforming of methane[J]. Energy & fuels, 2006, 20(2): 455-462. [36] GOKON N, OSAWA Y, NAKAZAWA D, et al.Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors[J]. International journal of hydrogen energy, 2009, 34(4): 1787-1800. [37] GOKON N, YAMAWAKI Y, NAKAZAWA D, et al.Kinetics of methane reforming over Ru/γ-Al2O3-catalyzed metallic foam at 650-900 ℃ for solar receiver-absorbers[J]. International journal of hydrogen energy, 2011, 36: 203-215. [38] 谢涛, 杨伯伦. 基于太阳能蓄热过程的甲烷二氧化碳重整研究进展[J]. 化工进展, 2016, 35(6): 1723-1730. XIE T, YANG B L.Advances of CO2 reforming of methane based on the solar energy storage[J]. Chemical industry and engineering progress, 2016, 35(6): 1723-1730. [39] SKOCYPEC R D, HOGAN R E, MUIR J F.Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: II—modeling and analysis[J]. Solar energy, 1994, 52(6): 479-490. [40] KODAMA T, KIYAMA A, SHIMIZU K I.Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of methane[J]. Energy & fuels, 2003, 17(1): 13-17. [41] KODAMA T, KIYAMA A, MORIYAMA T, et al.Solar methane reforming using a new type of catalytically-activated metallic foam absorber[J]. Journal of solar energy engineering, 2004, 126(2): 808-811. [42] KIM D, SHIN I, LEE J, et al.Solar CO2-reforming of methane using a double layer absorber[C]//Proceedings of 2011 Solar PACES, Concentrating Solar Power and Chemical Energy Systems Conference, Granada, Spain, 2011. [43] BERMAN A, KARN R K, EPSTEIN M.Steam reforming of methane on a Ru/Al2O3 catalyst promoted with Mn oxides for solar hydrogen production[J]. Green chemistry, 2007, 9(6): 626-631. [44] RUBIN R, KARNI J.Carbon dioxide reforming of methane in directly irradiated solar reactor with porcupine absorber[J]. Journal of solar energy engineering, 2011, 133(2): 021008. [45] BÖHMER M, LANGNICKEL U, SANCHEZ M. Solar steam reforming of methane[J]. Solar energy materials, 1991, 24(1): 441-448. [46] MC-NAUGHTON R, STEIN W.Improving efficiency of power generation from solar thermal natural gas reforming[C]//Proceedings of 15th International Solar PACES Concentrating Solar Power Symposium, Berlin, Germany, 2009. [47] MC-NAUGHTON R.Solar steam reforming using a closed cycle gaseous heat transfer loop[C]//Proceedings of 2012 SolarPACES, Concentrating Solar Power And Chemical Energy Systems Conference, Marrakech, Morocco, 2012. [48] KODAMA T, KOYANAGI T, SHIMIZU T, et al.CO2 reforming of methane in a molten carbonate salt bath for use in solar thermochemical processes[J]. Energy & fuels, 2001, 15(1): 60-65. [49] KODAMA T, ISOBE Y, KONDOH Y, et al.Ni/ceramic/molten-salt composite catalyst with high-temperature thermal storage for use in solar reforming processes[J]. Energy, 2004, 29(5): 895-903. [50] HATAMACHI T, KODAMA T, ISOBE Y.Carbonate composite catalyst with high-temperature thermal storage for use in solar tubular reformers[J]. Journal of solar energy engineering, 2005, 127(3):396-400 [51] KODAMA T, GOKON N, INUTA S-I, et al.Molten-salt tubular absorber/reformer (MoSTAR) project: the thermal storage media of Na2CO3-MgO composite materials[J]. Journal of solar energy engineering, 2009, 131(4): 041013-041020. [52] GIACONIA A, DE FALCO M, CAPUTO G, et al.Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers[J]. AIChE journal, 2008, 54(7): 1932-1944. [53] DE FALCO M, GIACONIA A, MARRELLI L, et al.Enriched methane production using solar energy: an assessment of plant performance[J]. International journal of hydrogen energy, 2009, 34(1): 98-109. [54] DE FALCO M, PIEMONTE V.Solar enriched methane production by steam reforming process: reactor design[J]. International journal of hydrogen energy, 2011, 36(13): 7759-7762.