随机风浪作用下漂浮式风力机MTMD振动控制研究

韩东东, 王文华, 李昕

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 256-264.

PDF(2796 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2796 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 256-264. DOI: 10.19912/j.0254-0096.tynxb.2021-0735

随机风浪作用下漂浮式风力机MTMD振动控制研究

  • 韩东东, 王文华, 李昕
作者信息 +

VIBRATION CONTROL OF FLOATING OFFSHORE WIND TURBINE UNDER STOCHASTIC WIND AND WAVE LOADS USING MULTIPLE TUNED MASS DAMPER

  • Han Dongdong, Wang Wenhua, Li Xin
Author information +
文章历史 +

摘要

基于多体动力学理论,通过二次开发,基于FAST-SC建立漂浮式风力机-多重调谐质量阻尼器(MTMD)耦合振动控制模型FAST-SC-MTMD。以驳船式海上风力机为研究对象,基于线性调频优化方法完成布置于机舱和平台位置的TMD参数设计。以漂浮式风力机结构运动响应控制率为评价指标,研究在随机荷载激励下将TMD和MTMD应用于在驳船式风力机的减振效果。研究发现,采用机舱和平台同时布置MTMD的减振控制策略,可有效降低驳船式风力机塔基荷载和运动响应。

Abstract

Based on the theory of multi-body dynamics, the coupled analysis model named FAST-SC-MTMD of floating offshore wind turbine with multiple tuned mass damper(MTMD) is established in the recompiled FAST-SC. Taking the barge-type offshore wind turbine as research object, the parameters are designed using the recommended optimization formulas for MTMD in offshore engineering. Then, the mitigation effects of TMD and MTMD are evaluated based on the reductions of structural responses of the floating offshore wind turbine under stochastic environmental loads. It can be seen that the pitch frequency should be prior designated as the MTMD tuning frequencies and the MTMD should be mounted in the nacelle and platform, in order to mitigate the motions of the tower and floating platform effectively.

关键词

海上风力机 / 振动控制 / 动力响应 / 调谐质量阻尼器 / 耦合动力反应分析

Key words

offshore wind turbines / vibration control / dynamic response / tuned mass damper / coupled dynamic analysis

引用本文

导出引用
韩东东, 王文华, 李昕. 随机风浪作用下漂浮式风力机MTMD振动控制研究[J]. 太阳能学报. 2022, 43(12): 256-264 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0735
Han Dongdong, Wang Wenhua, Li Xin. VIBRATION CONTROL OF FLOATING OFFSHORE WIND TURBINE UNDER STOCHASTIC WIND AND WAVE LOADS USING MULTIPLE TUNED MASS DAMPER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 256-264 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0735
中图分类号: TK8   

参考文献

[1] WILLIS D J, NIEZRECKI C, KUCHMA D, et al.Wind energy research: state-of-the-art and future research directions[J]. Renewable energy, 2018, 125: 133-154.
[2] MANZANO-AGUGLIARO F, SÁNCHEZ-CALERO M, ALCAYDE A, et al. Wind turbines offshore foundations and connections to grid[J]. Inventions, 2020, 5(1): 8.
[3] SNYDER B, KAISER M J.Ecological and economic cost-benefit analysis of offshore wind energy[J]. Renewable energy, 2009, 34(6): 1567-1578.
[4] BUTTERFIELD S, MUSIAL W, JONKMAN J, et al.Engineering challenges for floating offshore wind turbines[R]. National Renewable Energy Labatory(NREL), Golden, CO(United States), 2007.
[5] NAMIK H, STOL K.Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms[J]. Mechatronics, 2011, 21(4): 691-703.
[6] MOHAMMADI E, FADAEINEDJAD R, MOSCHOPOULOS G.Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines[J]. Journal of sound and vibration, 2018, 421: 132-152.
[7] RAACH S, SCHLIPF D, SANDNER F, et al.Nonlinear model predictive control of floating wind turbines with individual pitch control[C]//2014 American Control Conference, Portland, USA, 2014.
[8] WAKUI T, YOSHIMURA M, YOKOYAMA R.Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system[J]. Energy, 2017, 141: 373-388.
[9] 杨佳佳, 贺尔铭, 姚文旭,等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15):18-24, 57.
YANG J J, HE E M, YAO W X, et al.TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of vibration and shock,2020, 39(15): 18-24, 57.
[10] 黄致谦, 丁勤卫, 李春. 三种漂浮式风力机调谐质量阻尼器稳定性控制研究[J]. 振动与冲击, 2019, 38(21):112-119, 147.
HUANG Z Q, DING Q W, LI C.TMDs control effect on stability of three kinds of floating wind turbine[J]. Journal of vibration and shock, 2019, 38(21): 112-119, 147.
[11] 丁勤卫, 郝文星, 李春, 等. 漂浮式风力机结构动力学响应TMD控制及其参数优化研究[J]. 振动与冲击, 2018, 37(23): 69-78.
DING Q W, HAO W X, LI C, et al.TMD Control and its parametric optimization for structural dynamic response of a floating wind turbine[J]. Journal of vibration and shock, 2018, 37(23): 69-78.
[12] SI Y L, KARIMI H R, GAO H J.Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering structures, 2014, 69: 168-182.
[13] SI Y L, KARIMI H R, GAO H J.Modeling and parameter analysis of the OC3-hywind floating wind turbine with a tuned mass damper in nacelle[J]. Journal of applied mathematics, 2013(4): 1-10.
[14] HEMMATI A, OTERKUS E, KHORASANCHI M.Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers[J]. Ocean engineering, 2019, 172: 286-295.
[15] COLWELL S, BASU B.Tuned liquid column dampers in offshore wind turbines for structural control[J]. Engineering structures, 2009, 31(2): 358-368.
[16] JONKMAN B J, JONKMAN J M.FAST v8.16.00 a-bjj[S]. USA: National Renewable Energy Labatory(NREL), 2016.
[17] LACKNER M A, ROTEA M A.Passive structural control of offshore wind turbines[J]. Wind energy, 2011, 14(3): 373-388.
[18] LACKNER M A, ROTEA M A.Structural control of floating wind turbines[J]. Mechatronics,2011, 21(4): 704-719.
[19] LA CAVA W, LACKNER M A.Theory manual for the tuned mass damper module in FAST v8[R]. University of Massachusetts Amherst: Amherst, MA, USA, 2015.
[20] JONKMAN J M.Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. Colorado: University of Colorado at Boulder, 2007.
[21] IEC. Wind turbines, 2009. Part 3: design requirements for offshore wind turbines: IEC 61400-3 (ed. 1)[S]. International Electrotechnical Commission, 2009.
[22] JONKMAN B J, BUHL M L.TurbSim user’s guide[R]. National Renewable Energy Labatory (NREL), 2007.
[23] KAIMAL J C, WYNGAARD J C, IZUMI Y, et al.Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972, 98(417): 563-589.
[24] DEN HARTOG J P. Mechanical vibrations[M]. New York: Dover, 1985: 121-134.

基金

国家自然科学基金(51939002; 52001052)

PDF(2796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/