融合维纳过程和粒子滤波的风力发电机轴承剩余寿命预测

丁显, 徐进, 黎曦琳, 滕伟, 宫永立

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 248-255.

PDF(3807 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3807 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 248-255. DOI: 10.19912/j.0254-0096.tynxb.2021-0737

融合维纳过程和粒子滤波的风力发电机轴承剩余寿命预测

  • 丁显1,2, 徐进1,2, 黎曦琳3, 滕伟3, 宫永立1,2
作者信息 +

REMAINING LIFE PREDICTION OF WIND TURBINE BEARING BASED ON WIENER PROCESS AND PARTICLE FILTER

  • Ding Xian1,2, Xu Jin1,2, Li Xilin3, Teng Wei3, Gong Yongli1,2
Author information +
文章历史 +

摘要

提出维纳过程与粒子滤波相结合的滚动轴承剩余寿命预测方法,将维纳过程引入粒子滤波状态空间模型,充分利用其随机增量性质,增强模型的非线性表达能力,提高预测的准确性。提出弱跟踪粒子滤波策略调整维纳过程,解决概率密度分布方差过大的问题。该方法在试验台轴承和风力发电机轴承测试数据中均得到验证,可准确预测轴承剩余寿命。

Abstract

This paper proposes a method for predicting the remaining life of rolling bearings based on the combination of the Wiener process and the particle filter. The Wiener process is introduced into the particle filter state space model to make full use of its random incremental nature to enhance the nonlinear expression ability of the model and improve the accuracy of prediction. Weak-tracking particle filter strategy is used to adjust the Wiener process to solve the problem of too large of probability density distribution. The method in this paper has been verified by the test data of the bearing of the test bench and the wind turbine bearing on-site, accurately predicting the remaining life of the bearing.

关键词

风电机组 / 维纳过程 / 粒子滤波 / 剩余寿命 / 轴承性能退化

Key words

wind turbines / Wiener process / particle filter / remaining life / bearing performance degradation

引用本文

导出引用
丁显, 徐进, 黎曦琳, 滕伟, 宫永立. 融合维纳过程和粒子滤波的风力发电机轴承剩余寿命预测[J]. 太阳能学报. 2022, 43(12): 248-255 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0737
Ding Xian, Xu Jin, Li Xilin, Teng Wei, Gong Yongli. REMAINING LIFE PREDICTION OF WIND TURBINE BEARING BASED ON WIENER PROCESS AND PARTICLE FILTER[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 248-255 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0737
中图分类号: TK83   

参考文献

[1] 李辉, 胡姚刚, 唐显虎, 等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报, 2010, 30(33): 103-109.
LI H, HU Y G, TANG X H, et al.Method for on-line operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33): 103-109.
[2] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189.
CHEN X F, GUO Y J, XYU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 175-189.
[3] LEE J, WU F, ZHAO W, et al.Prognostics and health management design for rotary machinery systems-reviews, methodology and applications[J]. Mechanical systems and signal processing, 2014, 42(1-2): 314-334.
[4] 刘大同, 周建宝, 郭力萌, 等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报, 2015, 36(1): 1-16.
LIU D T, ZHOU J B, GUO L M, et al.Survey on lithium-ion battery health assessment and cycle life estimation[J]. Chinese journal of scientific instrument, 2015, 36(1): 1-16.
[5] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.
PENG Y, LIU D T.Data-driven prognostics and health management: a review of recent advances[J]. Chinese journal of scientific instrument, 2014, 35(3): 481-495.
[6] MAIO F D, TSUI K L, ZIO E.Combining relevance vector machines and exponential regression for bearing residual life estimation[J]. Mechanical systems and signal processing, 2012, 31: 405-427.
[7] SHAO Y, NEZU K.Prognosis of remaining bearing life using neural networks[J]. Proceedings of the institution of mechanical engineers, part 1: journal of systems and control engineering, 2000, 214(3): 217-230.
[8] 范彬, 胡雷, 胡茑庆. 退化速率跟踪粒子滤波在剩余使用寿命预测中的应用[J]. 国防科技大学学报, 2015, 37(3): 161-166.
FAN B, HU L, HU N Q.Remaining useful life prediction based on degradation rate tracking particle filter[J]. Journal of National University of Defense Technology, 2015, 37(3): 161-166.
[9] 刘淑杰, 郝昆昆, 王永, 等. 基于改进粒子滤波算法的动力锂离子电池荷电状态估计[J]. 大连理工大学学报, 2020, 60(4): 392-401.
LIU S J, HAO K K, WANG Y, et al.State of charge estimation of power lithium-ion battery based on improved particle filter algorithms[J]. Journal of Dalian University of Technology, 2020, 60(4): 392-401.
[10] TENG W, HAN C, HU Y K, et al.A robust model-based approach for bearing remaining useful life prognosis in wind turbines[J]. IEEE access, 2020, 8: 47133-47143.
[11] 朱晓栋, 陈则王. 基于维纳过程的电池剩余使用寿命预测[J]. 机械制造与自动化, 2018, 47(4): 197-200.
ZHU X D, CHEN Z W.Remaining useful life prediction of battery based on wiener process[J]. Machine building and automation, 2018, 47(4): 197-200.
[12] 胡姚刚, 李辉, 廖兴林, 等. 风电轴承性能退化建模及其实时剩余寿命预测[J]. 中国电机工程学报, 2016, 36(6): 1643-1649.
HU Y G, LI H, LIAO X L, et al.Performance degradation model and prediction method of real-time remaining life for wind turbine bearings[J]. Proceedings of the CSEE, 2016, 36(6): 1643-1649.
[13] 黄亮, 刘君强, 贡英杰. 基于Wiener过程的发动机多阶段剩余寿命预测[J]. 北京航空航天大学学报, 2018, 44(5): 1081-1087.
HUANG L, LIU J Q, GONG Y J.Multi-phase residual life prediction of engines based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1081-1087.
[14] 黄泽毅. 基于自适应维纳过程的剩余寿命预测方法研究[D]. 杭州: 浙江大学, 2015.
HUANG Z Y.Research on remaining useful life prediction based on the adaptive Wiener process[D]. Hangzhou: Zhejiang University, 2015.
[15] WANG W B, CARR M, XU W J, et al.A model for residual life prediction based on Brownian motion with an adaptive drift[J]. Microelectronics reliability, 2011, 51(2): 285-293.
[16] ARULAMPALAM M S, MASKELL S, GORDON N, et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE transactions on signal processing, 2002, 50(2): 174-188.
[17] HU Y, BARALDI P, MAIO F D, et al.A particle filtering and kernel smoothing-based approach for new design component prognostics[J]. Reliability engineering and system safety, 2015, 134: 19-31.
[18] 金晓航, 李建华, 孙毅. 基于二元维纳过程的轴承剩余寿命预测[J]. 仪器仪表学报, 2018, 39(6): 89-95.
JIN X H, LI J H, SUN Y.Bearing remaining useful life prediction based on two-dimensional Wiener process[J]. Chinese journal of scientific instrument, 2018, 39(6): 89-95.
[19] NECTOUX P, GOURIVEAU R, MEDJAHER K, et al.PRONOSTIA: an experimental platform for bearings accelerated degradation tests[C]//IEEE International Conference on Prognostics and Health Management, PHM’12., Denver, Colorado, USA, 2012.
[20] WANG B, LEI Y G, LI N B, et al.A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE transactions on reliability, 2020, 69(1): 401-412.
[21] ISO 10816-21:2015, Measurement and evaluation of the mechanical vibration of wind energy turbines and their components onshore wind energy turbines with gears[S].
[22] WANG D, YANG F F, ZHAO Y, et al.Prognostics of lithium-ion batteries based on state space modeling with heterogeneous noise variances[J]. Microelectronics reliability, 2017, 75: 1-8.
[23] AHMAD W, KHAN S A, ISLAM M M M, et al. A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models[J]. Reliability engineering & system safety, 2019, 184: 67-76.

基金

国家自然科学基金(51775186)

PDF(3807 KB)

Accesses

Citation

Detail

段落导航
相关文章

/