一步法制备高效TiO2/PbS异质结量子点太阳电池

邢美波, 丁宪喆, 景栋梁, 李子睿, 王瑞祥

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 19-24.

PDF(2276 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2276 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 19-24. DOI: 10.19912/j.0254-0096.tynxb.2021-0738

一步法制备高效TiO2/PbS异质结量子点太阳电池

  • 邢美波, 丁宪喆, 景栋梁, 李子睿, 王瑞祥
作者信息 +

PREPARATION OF HIGH EFFICIENCY TIO2/PBS QUANTUM DOT HETEROJUNCTION SOLAR CELLS BY SINGLE-STEP METHOD

  • Xing Meibo, Ding Xianzhe, Jing Dongliang, Li Zirui, Wang Ruixiang
Author information +
文章历史 +

摘要

采用一步涂层法制备TiO2/PbS异质结且带有不同浓度PbS量子点光吸收层的太阳电池器件。测试结果表明,用浓度为200 mg/mL的PbS量子点制备的太阳电池在AM1.5模拟光照下获得的能量转换效率(PCE)为9.08%,其开路电压(VOC)为0.570 V、短路电流(JSC)为29.6 mA/cm2、填充因子(FF)为0.539。研究证实了一步法的可行性与可靠性。与传统的层层旋涂法相比,一步涂层法具有操作过程简单、材料消耗少、制备薄膜质量好等优点,可用于大批量制备高效率量子点太阳电池。

Abstract

To fabricate high efficiency quantum dot solar cells, the absorbing p-type PbS quantum dots was prepared on n-type TiO2 by simplified single-step spin coating method. In order to confirm the effectiveness of the single-step method and obtain high efficiency devices, QDSCs with two different concentrations of PbS QDs are prepared and their performance is investigated. It is demonstrated that the device with lower QD loading achieved higher power conversion efficiency (PCE) of 9.08%, with open-circuit voltage (VOC) of 0.570 V, short-circuit current density (JSC) of 29.6 mA/cm2, fill factor (FF) of 0.539, under simulated AM1.5 solar illuminations. The experiment results verify feasibility and reliability of the single-step method. Compared with traditional layer-by-layer (LBL) method, the single-step method demonstates merits of simpler process, less material consumption, and higher surface quality. Consequently, it is potential to apply single-step for quantum dot solar cell mass production.

关键词

太阳电池 / 半导体量子点 / 太阳电池效率 / 一步法 / 量子点浓度

Key words

solar cells / semiconductor quantum dots / solar cell efficiency / single-step / QD concentration

引用本文

导出引用
邢美波, 丁宪喆, 景栋梁, 李子睿, 王瑞祥. 一步法制备高效TiO2/PbS异质结量子点太阳电池[J]. 太阳能学报. 2022, 43(12): 19-24 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0738
Xing Meibo, Ding Xianzhe, Jing Dongliang, Li Zirui, Wang Ruixiang. PREPARATION OF HIGH EFFICIENCY TIO2/PBS QUANTUM DOT HETEROJUNCTION SOLAR CELLS BY SINGLE-STEP METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 19-24 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0738
中图分类号: TK914   

参考文献

[1] GARCÍA DE ARQUER F P, ARMIN A, MEREDITH P, et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature reviews materials, 2017, 2(3): 16100.
[2] LAN X E, VOZNYY O, DE ARQUER F P G, et al. 10.6% Certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation[J]. Nano letters, 2016, 16(7): 4630-4634.
[3] NREL. Best Research-Cell Efficiency for Emerging PV[R]. 2020.
[4] WANG Z, HU Z S, KAMARUDIN M A, et al.Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots[J]. Solar energy, 2018, 174: 399-408.
[5] WANG R L, SHANG Y Q, KANJANABOOS P, et al.Colloidal quantum dot ligand engineering for high performance solar cells[J]. Energy & environmental science, 2016, 9(4): 1130-1143.
[6] BÖHM M L, JELLICOE T C, RIVETT J P H, et al. Size and energy level tuning of quantum dot solids via a hybrid ligand complex[J]. The journal of physical chemistry letters, 2015, 6(17): 3510-3514.
[7] ZHANG Y J, ZHEREBETSKYY D, BRONSTEIN N D, et al.Molecular oxygen induced in-gap states in PbS quantum dots[J]. ACS nano, 2015, 9(10): 10445-10452.
[8] HUANG J, XU B, YUAN C Z, et al.Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation[J]. ACS applied materials & interfaces, 2014, 6(21): 18808-18815.
[9] NING Z J, VOZNYY O, PAN J, et al.Air-stable n-type colloidal quantum dot solids[J]. Nature materials, 2014, 13(8): 822-828.
[10] CRISP R W, KROUPA D M, MARSHALL A R, et al.Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells[J]. Scientific reports, 2015, 5: 9945.
[11] BEYGI H, SAJJADI S A, BABAKHANI A, et al.Solution phase surface functionalization of PbS nanoparticles with organic ligands for single-step deposition of p-type layer of quantum dot solar cells[J]. Applied surface science, 2018, 459: 562-571.
[12] FISCHER A, ROLLNY L, PAN J, et al.Directly deposited quantum dot solids using a colloidally stable nanoparticle ink[J]. Advanced materials, 2013, 25(40): 5742-5749.
[13] NING Z J, DONG H P, ZHANG Q, et al.Supplementary information solar cells based on inks of n-type colloidal quantum dots[J]. ACS nano, 2014, 8(10): 10321-10327.
[14] CHOI H, LEE J G, MAI X D, et al.Supersonically spray-coated colloidal quantum dot ink solar cells[J]. Scientific reports, 2017, 7(1): 622.
[15] LIU M, VOZNYY O, SABATINI R, et al.Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids[J]. Nature materials, 2017, 16(2): 258-263.
[16] KIM S, NOH J, CHOI H, et al.One-step deposition of photovoltaic layers using iodide terminated PbS quantum dots[J]. The journal of physical chemistry letters, 2014, 5(22): 4002-4007.
[17] GIANSANTE C, CARBONE L, GIANNINI C, et al.Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics[J]. The journal of physical chemistry C, 2013, 117(25): 13305-13317.
[18] KIM J Y, ADINOLFI V, SUTHERLAND B R, et al.Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films[J]. Nature communications, 2015, 6(1): 7772.
[19] ZHANG Y H, WU G H, MORA-SERÓ I, et al.Improvement of photovoltaic performance of colloidal quantum dot solar cells using organic small molecule as hole-selective layer[J]. The journal of physical chemistry letters, 2017, 8(10): 2163-2169.
[20] DING C, ZHANG Y H, LIU F, et al.Recombination suppression in pbs quantum dot heterojunction solar cells by energy-level alignment in the quantum dot active layers[J]. ACS Applied materials & interfaces, 2018, 10(31): 26142-26152.
[21] XING M B, ZHANG Y H, SHEN Q, et al.Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells[J]. Solar energy, 2020, 195: 1-5.
[22] CADEMARTIN L, MONTANARI E, CALESTANI G, et al.Size-dependent extinction coefficients of PbS quantum dots[J]. Journal of the American Chemical Society, 2006, 128(31): 10337-10346.
[23] WANG Y J, LU K Y, HAN L, et al.In situ passivation for efficient PbS quantum dot solar cells by precursor engineering[J]. Advanced materials, 2018, 30(16): 1704871.
[24] USHAKOVA E V, CHEREVKOV S A, LITVIN A P, et al.Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices[J]. The journal of physical chemistry C, 2016, 120(43): 25061-25067.
[25] ZHANG Y H, WU G H, DING C, et al.Lead selenide colloidal quantum dot solar cells achieving high open-circuit voltage with one-step deposition strategy[J]. The journal of physical chemistry letters, 2018, 9(13): 3598-3603.
[26] KIRMANI A R, GARCÍA DE ARQUER F P, FAN J Z, et al. Molecular doping of the hole-transporting layer for efficient, single-step-deposited colloidal quantum dot photovoltaics[J]. ACS energy letters, 2017, 2(9): 1952-1959.

基金

北京市优秀人才培养资助青年骨干个人项目(2018000020124G053); 北京建筑大学金字塔人才培养工程建大英才项目(JDYC20200316)

PDF(2276 KB)

Accesses

Citation

Detail

段落导航
相关文章

/