基于雅可比旋量的风电机组驱动链装配误差分析

张永亮, 黄琪元, 王书楠, 卞松成

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 242-247.

PDF(2450 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2450 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 242-247. DOI: 10.19912/j.0254-0096.tynxb.2021-0740

基于雅可比旋量的风电机组驱动链装配误差分析

  • 张永亮, 黄琪元, 王书楠, 卞松成
作者信息 +

ASSEMBLY ERROR ANALYSIS OF WIND TURBINE DRIVE CHAIN BASED ON JACOBIAN ROTATION

  • Zhang Yongliang, Huang Qiyuan, Wang Shu’nan, Bian Songcheng
Author information +
文章历史 +

摘要

为了对风电机组中的驱动链系统进行装配误差分析,以雅可比旋量理论为基础,建立综合考虑局部并联尺寸的雅可比旋量模型。首先运用几何杠杆原理将驱动链装配中所涉及的并联尺寸链转化为串联尺寸链,然后建立装配体的小位移旋量和雅可比矩阵进行误差计算。最后,利用该方法对某型号的风电机组驱动链系统进行装配误差分析,对比误差实测数据表明:并联尺寸链的计算精度远远优于传统雅可比旋量矩阵。

Abstract

In order to analyze the assembly error of the drive train system of the wind turbine, based on the Jacobia spinor theory, a Jacobia model that comprehensively considers the local parallel size is established. Firstly, using the principle of geometric lever to convert the parallel dimension chain involved in the drive chain assembly into a series dimension chain. Then establishing the small displacement screw and Jacobian matrix of the assembly to calculate the error. Finally, this method is used to analyze the assembly error of a certain type of wind turbine drive chain system. Comparison with the measured data shows that the calculation accuracy of the parallel dimensional chain is far superior to the traditional Jacobi spinor matrix.

关键词

风电机组 / 误差分析 / 雅可比旋量 / 驱动链 / 并联尺寸 / 几何杠杆效应

Key words

wind turbines / error analysis / Jacobi spinor / drive chain / parallel size / geometric leverage effect

引用本文

导出引用
张永亮, 黄琪元, 王书楠, 卞松成. 基于雅可比旋量的风电机组驱动链装配误差分析[J]. 太阳能学报. 2022, 43(12): 242-247 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0740
Zhang Yongliang, Huang Qiyuan, Wang Shu’nan, Bian Songcheng. ASSEMBLY ERROR ANALYSIS OF WIND TURBINE DRIVE CHAIN BASED ON JACOBIAN ROTATION[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 242-247 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0740
中图分类号: TH161.23   

参考文献

[1] SPECKHART F H.Calculation of tolerance based on a minimum cost approach[J]. Journal of engineering for industry, 1972, 94(2): 447-453.
[2] MUJEZINOVI A, DAVIDSON J, SHAH J.A new mathematical model for geometrictolerances as applied to round faces[J]. ASME transactions on journal of mechanical design, 2004, 126(3): 504-518.
[3] CLEMENT A, RIVIERE A.Tolerancing versus nominal modeling in next generation CAD/CAM system[C]//Proceedings of 3rd CIRP Seminar on Computer Aided Tolerancing, Tokyo, Japan, 1993: 97-113.
[4] TURNER J U, WOZNY M J.The M-space theory of tolerances[C]//Proceedings of the ASME 16th Design Automation Conference, Chicago, USA, 1990: 217-225.
[5] BO C W,YANG Z H, WANG L B, et al.A comparison of tolerance analysis models for assembly[J]. International journal of advanced manufacturing technology, 2013, 68(4): 739-754.
[6] 陈华, 唐广辉, 陈志强, 等. 基于雅可比旋量统计法的发动机三维公差分析[J]. 哈尔滨工程大学学报, 2014, 35(11): 1397-1402.
CHEN H, TANG G H,CHEN Z Q,et al.Three-dimensional tolerance analysis of engine based on Jacobi spinner statistical method[J]. Journal of Harbin Engineering University, 2014, 35(11): 1397-1402.
[7] DENIS T, VINCENT D.Taking into account form variations in polyhedral approach in tolerancing analysis[J]. Procedia CIRP, 2018(5): 75-81.
[8] 肖华, 朱永国, 刘春风, 等. 基于T-Map的飞机部件交点轴线公差转化方法[J]. 中国机械工程, 2019(13): 1558-1567.
XIAO H, ZHU Y G, LIU C F, et al.Transformation method of axis tolerance of aircraft component intersection points based on T-Map[J]. China mechanical engineering, 2019(13): 1558-1567.
[9] 谢雄伟, 徐宏海. 基于3DCS的RV减速器静态装配公差分析及优化[J]. 机械传动, 2019, 43(6): 150-153.
XIE X W, XU H H.Analysis and optimization of static assembly tolerance of RV reducer based on 3DCS[J]. Mechanical transmission, 2019, 43(6): 150-153.
[10] 梦巧凤, 张林鍹. 基于3DCS的三维尺寸公差的分析与优化[J]. 系统仿真学报, 2018, 30(5): 1730-1738.
MENG Q F, ZHANG L K.Analysis and optimization of 3D dimensional tolerances based on 3DCS[J]. Journal of system simulation, 2018, 30(5): 1730-1738.
[11] 熊峰, 李刚炎. 基于雅可比旋量的并联配合特征三维公差分析方法及其应用[J]. 组合机床与自动化加工技术,2019(11): 13-16.
XIONG F, LI G Y.Three-dimensional tolerance analysis method of parallel fit feature based on Jacobian rotation and its application[J]. Modular machine tool and automatic processing technology, 2019(11): 13-16.
[12] 穆晓凯, 孙清超. 基于载荷作用的柔性体三维公差建模及精度影响分析[J]. 机械工程学报, 2018, 54(11): 39-48.
MU X K, SUN Q C.Three-dimensional tolerance modeling and accuracy impact analysis of flexible bodies based on load action[J]. Chinese journal of mechanical engineering, 2018, 54(11): 39-48.
[13] 王昊琪, 吕振宇. 面向公差分析的几何尺寸和公差语义信息翻译[J]. 计算机集成制造系统, 2018, 24(4): 994-1006.
WANG H Q, LYU Z Y.Tolerance analysis-oriented geometric dimension and tolerance semantic information translation[J]. Computer integrated manufacturing system, 2018, 24(4): 994-1006.
[14] 张为民, 陈灿, 李鹏忠, 等.基于雅可比旋量法的实际工况公差建模[J].计算机集成制造系统, 2011, 17(1): 77-83.
ZHANG W M, CHEN C,LI P Z, et al.Tolerance modeling of actual working conditions based on Jacobi spinner method[J]. Computer integrated manufacturing system, 2011, 17(1): 77-83.
[15] 黄康, 徐锐, 陈奇, 等. 小位移旋量和响应面法相结合的齿轮公差分析模型构建方法[J]. 西安交通大学学报, 2017,51(9): 77-84,91.
HUANG K, XU R, CHEN Q, et al.Gear tolerance analysis model construction method combining small displacement screw and response surface method[J]. Journal of Xi’an Jiaotong University, 2017, 51(9): 77-84, 91.

基金

国家自然科学基金青年基金项目(51205255)

PDF(2450 KB)

Accesses

Citation

Detail

段落导航
相关文章

/