不同纵荡幅值下浮式水平轴叶轮的水动力性能分析

张成林, 刘安东, 王世明, 谢双义

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 482-488.

PDF(2378 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2378 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 482-488. DOI: 10.19912/j.0254-0096.tynxb.2021-0741

不同纵荡幅值下浮式水平轴叶轮的水动力性能分析

  • 张成林1,2, 刘安东2, 王世明1, 谢双义3
作者信息 +

ANALYSIS ON HYDRODYNAMIC PERFORMANCE OF FLOATING HORIZONTAL-AXIS IMPELLER UNDER DIFFERENT SURGE AMPLITUDES

  • Zhang Chenglin1,2, Liu Andong2, Wang Shiming1, Xie Shuangyi3
Author information +
文章历史 +

摘要

为研究浪流联合环境对于浮式潮流能水轮机性能的影响,对均匀来流环境下施加波浪激励下的水平轴获能叶轮进行水动力分析。结合ANSYS-Fluent流体仿真软件并对其进行二次开发,采用重叠网格法建立均匀来流时浮式获能叶轮受迫运动的水动力分析模型,模拟S型双向潮流能叶轮在不同幅值的纵荡运动时的水动力性能,并结合实际水槽试验对计算结果的准确性进行验证。分析结果显示:纵荡激励使获能叶轮周边的流场速度产生明显的瞬时波动,且获能叶轮受力载荷的波动幅值会因纵荡激励作用的增强而升高;叶轮尾流场的流速变化和流线的变化伴随纵荡幅值的增大而增大,但流场的均匀度伴随纵荡幅值的增大而降低。

Abstract

In order to study the effect of wave-current combined environment on the performance of floating tidal current turbine, the hydrodynamic analysis of horizontal axis energy-capacitated impeller under wave excitation in uniform inflow environment is carried out. Combined with ANSYS-Fluent fluid simulation software and its secondary development, the hydrodynamic analysis model of the forced motion of the floating energy-capturing impeller in uniform inflow is established by using the overlapping grid method. The hydrodynamic performance of the S-type bidirectional tidal current energy impeller in surge motion with different amplitudes is simulated, and the accuracy of the calculation results is verified by the actual flume test. The analysis results show that the surge excitation causes obvious instantaneous fluctuation of the flow field velocity around the impeller, and the fluctuation amplitude of the force load of the impeller will increase due to the enhancement of the surge excitation. The velocity change and streamline change of the impeller wake field increase with the increase of the surge amplitude, but the uniformity of the flow field decreases with the increase of the surge amplitude.

关键词

潮流能 / 水动力学性能 / 计算流体力学 / 叶轮 / 重叠网格 / 受迫纵荡运动

Key words

tidal current energy / hydrodynamic performance / computational fluid dynamics / impeller overlapping grid / forced surge motion

引用本文

导出引用
张成林, 刘安东, 王世明, 谢双义. 不同纵荡幅值下浮式水平轴叶轮的水动力性能分析[J]. 太阳能学报. 2022, 43(12): 482-488 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0741
Zhang Chenglin, Liu Andong, Wang Shiming, Xie Shuangyi. ANALYSIS ON HYDRODYNAMIC PERFORMANCE OF FLOATING HORIZONTAL-AXIS IMPELLER UNDER DIFFERENT SURGE AMPLITUDES[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 482-488 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0741
中图分类号: P743.1    P743.2   

参考文献

[1] 游亚戈, 李伟, 刘伟民, 等. 海洋能发电技术的发展现状与前景[J]. 电力系统自动化, 2010, 34(14): 1-12.
YOU Y G,LI W, LIU W M, et al.Development status and prospects of ocean power generation technology[J]. Automation of electric power systems, 2010, 34(14): 1-12.
[2] 张理. 我国海洋能开发利用思路的初步探索[C]//2012年度海洋工程学术会议, 中国造船工程学会, 厦门, 中国, 2013: 555-560.
ZHANG L.Preliminary exploration of my country’s ocean energy development and utilization ideas[C]//2012 Ocean Engineering Academic Conference, Chinese Society of Shipbuilding Engineering, Xiamen, China, 2013: 555-560.
[3] 张理, 李志川. 潮流能开发现状、发展趋势面临的力学问题[J]. 力学学报, 2016, 48(5): 1019-1032.
ZHANG L, LI Z C.The current situation of tidal energy development and the mechanical problems faced by the development trend[J]. Acta mechanica sinica, 2016, 48(5): 1019-1032.
[4] ZHANG X W, ZHANG L, WANG F,et al.Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine[J]. China ocean engineering, 2014, 28(1): 95-103.
[5] FENG Y J, WANG X J, KE W W, et al.Numerical analysis to four-wave mixing induced spectral broadening in high power fiber lasers[C]//International Symposium on High Power Laser Systems and Applications, Chengdu, China, 2014.
[6] COIRO D P, MARCO A D, NICOLOSI F, et al.Dynamic behaviour of the patented kobold tidal current turbine: numerical and experimental aspects[J]. Acta polytechnica, 2005, 45(3): 77-84.
[7] CAMPOREALE S M, MAGI V.Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion[J]. Energy conversion and management, 2000, 41(16): 1811-1827.
[8] 李志川, 张亮, 孙科, 等. 垂直轴潮流水轮机数值模拟研究[J]. 太阳能学报, 2011, 32(9): 1321-1326.
LI Z C, ZHANG L, SUN K,et al.Numerical simulation study of vertical axis tidal current turbine[J]. Acta energiae solaris sinica, 2011, 32(9): 1321-1326.
[9] ROC T, GREAVES D, THYNG K M, et al.Tidal turbine representation in an ocean circulation model: towards realistic applications[J]. Ocean engineering, 2014, 78: 95-111.
[10] UMEYAMA M.Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current[J]. Journal of waterway, port, coastal, and ocean engineering, 2010, 137(2): 85-94.
[11] ZHANG X W, ZHANG L, WANG F, et al.Research on the unsteady hydrodynamic characteristics of vertical axis tidal turbine[J]. China ocean engineering, 2014, 28(1): 95-103.
[12] 汪鲁兵, 张亮, 曾念东. 一种竖轴潮流发电水轮机性能优化方法的初步研究[J]. 哈尔滨工程大学学报, 2004, 25(4): 417-422.
WANG L B,ZHANG L, ZENG N D.A preliminary study on the performance optimization method of a vertical-axis tidal current generating turbine[J]. Journal of Harbin Engineering University, 2004, 25(4): 417-422.
[13] 严城. 浮式水平轴潮流能涡轮叶片设计及水动力特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
YAN C.Research on blade design and hydrodynamic characteristics of floating horizontal axis tidal current energy turbine[D]. Harbin: Harbin Institute of Technology, 2019.
[14] 王凯, 孙科, 张亮. 不同密实度垂直轴潮流能水轮机的相位干扰[J]. 哈尔滨工业大学学报, 2016, 48(8): 179-184.
WANG K, SUN K, ZHANG L.Phase interference of vertical-axis tidal energy turbines with different densities[J]. Journal of Harbin Institute of Technology, 2016, 48(8): 179-184.
[15] NEGRO S O, ALKEMADE F, HEKKERT M P.A review of innovation system problems[J]. Renewable and sustainable energy reviews, 2012, 16(6): 3836-3846.
[16] LUST E E, LUZNIK L, FLACK K A, et al.The influence of surface gravity waves on marine current turbine performance[J]. International journal of marine energy, 2013(3-4): 27-40.
[17] DRAYCOTT S, PAYNE G, STEYNOR G, et al.An experimental investigation into non-linear wave loading on horizontal axis tidal turbines[J]. Journal of fluids and structures, 2019, 84: 199-217.
[18] 张学伟, 张亮, 李志川, 等. 潮流能自由变偏角水轮机限位角优化方法[J]. 哈尔滨工程大学学报, 2012, 33(11): 1341-1345.
ZHANG X W, ZHANG L, LI Z C,et al.The optimization method of the limit angle of the tidal energy freely variable deflection angle of the turbine[J]. Journal of Harbin Engineering University, 2012, 33(11): 1341-1345.
[19] 王树齐, 张亮, 徐刚, 等. 自由面条件下水平轴潮流能叶轮水动力研究[J]. 哈尔滨工程大学学报, 2016, 37(10): 1330-1334.
WANG S Q, ZHANG L, XU G, et al.Hydrodynamic study of horizontal axis tidal current impeller under free surface condition[J]. Journal of Harbin Engineering University, 2016, 37(10): 1330-1334.
[20] PARASCHIVOIU I.Double-multiple streamtube model for studying vertical-axis wind turbines[J]. Journal of propulsion & power, 1988, 4(4): 370-377.
[21] GORLE J M, LUDOVIC C, PONS F,et al.Flow and performance analysis of H-Darrieus hydroturbine in a confined flow: a computational and experimental study[J]. Journal of fluids & structures, 2016, 66: 382-402.
[22] 张凯琳. 应用PimpleDyMFoam的水平轴潮流能水轮机数值计算研究[D]. 大连: 大连理工大学, 2013.
ZHANG K L.Research on numerical calculation of horizontal axis tidal current turbine based on PimpleDymFoam[D]. Dalian: Dalian University of Technology, 2013.
[23] 马勇, 张亮, 由世洲. 潮流发电装置运动衰减特性与不规则波响应[J]. 力学学报, 2013, 45(3): 343-348.
MA Y, ZHANG L, YOU S Z.Motion attenuation characteristics and irregular wave response of tidal current generator[J]. Acta mechanica sinica, 2013, 45(3): 343-348.
[24] 胡戈行. 竖轴潮流能水轮机水动力性能的二维数值模拟研究[D]. 青岛: 中国海洋大学, 2015.
HU G X.Two dimensional numerical simulation of hydrodynamic performance of vertical axis tidal current turbine[D]. Qingdao :Ocean University of China, 2015.
[25] 盛其虎, 周念福, 张学伟, 等. 二维垂直轴水轮机强迫振荡水动力性能分析[J]. 哈尔滨工程大学学报, 2015, 1(1): 41-45.
SHENG Q H, ZHOU N F, ZHANG X W, et al.Hydrodynamic performance analysis of forced oscillation of two-dimensional vertical axis water turbine[J]. Journal of Harbin University of Engineering, 2015, 1(1): 41-45.

基金

国家自然基金面上项目(41976194); 上海市工程技术研究中心建设计划(19DZ2254800); 重庆理工大学科研启动基金(2020ZDZ023)

PDF(2378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/