将SMA粘贴在大型风力机叶片的表面形成新的智能叶片结构,并探讨伪弹性SMA对叶片的振动抑制效果。采用SolidWorks与Excel软件相结合的方法建立风力机叶片三维壳体模型,基于ANSYS ACP模块对含SMA的复合材料叶片进行铺层设计,并验证该模型;考虑叶片的弯扭耦合效应及重力影响,基于有限元理论建立含SMA的运动学方程,采用模态叠加法求解其静态响应、谐响应及随机振动。分析结果表明:由于SMA的存在,不同静态载荷作用下,SMA的应力-应变之间均形成封闭的滞后环;将叶片的固有频率移向更高的频率,各阶模态对应的振幅明显降低。在振动能量带宽0.5~2.4 Hz的范围内,含有SMA层强化的风力机叶片振动能量响应值降低更为显著。
Abstract
SMA layers were pasted on the surface of a large wind turbine blade to form a new intelligent blade structure, the vibration suppression effect ofpseudoelastic SMA on the blade was explored. The three-dimensional shell model of the wind turbine blade was established by the method of combining SolidWorks and Excel software. Based on the ANSYS ACP module, the composite material blade containing SMA was laid and the model was verified. The static response, harmonic response, and random vibration were analyzed.The results show that due to the existence of SMA, under different lateral loads, a closed hysteresis loop is formed between the stress-strain of the SMA; the natural frequency of the blade is moved to a higher frequency, and the amplitude corresponding to each mode is significantly reduced. . When the excitation force frequency is close to the natural frequency of the blade, the response peak appears, and the response is smaller in other frequency ranges. Among them, the maximum amplitude of 3.25 m occurs at a frequency of 0.16 Hz, and the amplitude is reduced by 11.87%. Within the bandwidth of the vibration energy, as the frequency increases, the energy of the vibration gradually decreases. The energy of vibration is mainly concentrated in the range of 0.5 Hz to 2.4 Hz. At the same frequency, the response value of the vibration energy of the wind turbine blade reinforced by the SMA layer is smaller. The cloud diagram of blade displacement distribution further verifies the damping effect of SMA on wind turbine blades.
关键词
风力机叶片 /
复合材料铺层 /
形状记忆合金 /
振动控制
Key words
wind turbine blades /
composite layer /
shape memory alloy /
vibration control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李剑. 我国风能发电发展前景研究[J]. 中国设备工程, 2019, 425(14): 184-185.
LI J.Research on the development prospect of wind power generation in China[J]. China equipment engineering, 2019, 425(14): 184-185.
[2] ZHANG S, LI X.Large scale wind power integration in China: analysis from a policy perspective[J]. Renewable & sustainable energy reviews, 2012, 16(2): 1110-1115.
[3] 王月普. 风力发电现状与发展趋势分析[J]. 电力设备管理, 2020, 50(11): 21-22.
WANG Y P.Analysis of current situation and development trend of wind power generation[J]. Power equipment management, 2020, 50(11): 21-22.
[4] 胡燕平, 戴巨川, 刘德顺. 大型风力机叶片研究现状与发展趋势[J]. 机械工程学报, 2013, 49(20): 140-151.
HU Y P, DAI J C, LIU D S.Research status and development trend of large wind turbine blades[J]. Journal of mechanical engineering, 2013, 49(20): 140-151.
[5] FITZGERALD B, BASU B.Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades[J]. Journal of sound and vibration, 2014, 333(23): 5980-6004.
[6] ZHANG Z L, NIELSEN S R K, BASU B, et al. Nonlinear modeling of tuned liquid dampers(TLDs) in rotating wind turbine blades for damping edgewise vibrations[J]. Journal of fluids and structures, 2015, 59: 252-269.
[7] STAINO A, BASU B.Dynamics and control of vibrations in wind turbines with variable rotor speed[J]. Engineering structures, 2013, 56: 58-67.
[8] TAO W F, BASU B, LI J.Reliability analysis of active tendon-controlled wind turbines by a computationally efficient wavelet-based probability density evolution method[J]. Structural control and health monitoring, 2018, 25(3): e2078.
[9] CHEN J, YUAN C, LI J, et al.Semi-active fuzzy control of edgewise vibrations in wind turbine blades under extreme wind[J]. Journal of wind engineering & industrial aerodynamics, 2015, 147: 251-261.
[10] 乔印虎. 压电板壳风力机叶片设计与振动控制研究[D]. 合肥: 合肥工业大学, 2014.
QIAO Y H.Research on blade design and vibration control of piezoelectric plate shell wind turbine[D]. Hefei: Hefei University of Technology, 2014.
[11] 刘姝, 李中涛, 秦廷, 等. 压电陶瓷智能材料的风机叶片振动主动控制研究[J]. 大电机技术, 2015(4): 59-64.
LIU S, LI Z T, QIN T, et al.Research on active vibration control of fan blade based on piezoelectric ceramic intelligent materials[J]. Large motor technology, 2015(4): 59-64.
[12] ABDELRAHMAN W G, AL-GARNI A Z, ABDELMAKSOUD S I, et al. Effect of piezoelectric patch size and material on active vibration control of wind turbine blades[J]. Journal of vibration engineering & technologies, 2018, 6(2): 155-161.
[13] JAGADEESH V, YUVARAJA M, CHANDHRU A, et al.Investigations on vibration characteristics of sma embedded horizontal axis wind turbine blade[J]. IOP conference series: materials science and engineering, 2018, 310: 012067.
[14] NICOLETTI R, LIEBICH R.Analysis of long wind turbine blades with shape memory alloy wires in super-elastic phase[J]. Journal of intelligent material systems and structures, 2018, 29(15): 3108-3123.
[15] 孙双双, 武丹, 刘冬迪. 内嵌伪弹性形状记忆合金纤维的复合材料空心梁动态有限元分析[J]. 上海交通大学学报, 2018, 52(7): 845-852.
SUN S S, WU D, LIU D D.Dynamic finite element analysis of composite hollow beams embedded with pseudo elastic shape memory alloy fibers[J]. Journal of Shanghai JiaoyTong University, 2018, 52(7): 845-852.
[16] 刘叶垚. 风力机叶片复合材料性能的研究[D]. 兰州: 兰州理工大学, 2018.
LIU Y Y.Study on properties of composite materials for wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2018.
[17] 刘立群, 吴玉萍, 刘军峰, 等. 复合材料在风力机叶片上的应用[J]. 能源技术, 2010, 31(6): 331-333, 337.
LIU L Q, WU Y P, LIU J F, et al.Application of composite materials on wind turbine blades[J]. Energy technology, 2010, 31(6): 331-333, 337.
[18] 吴卓琦. 大型风力机智能叶片抑颤研究[D]. 兰州: 兰州理工大学, 2018.
WU Z Q.Research on vibration suppression of intelligent blades of large wind turbines[D]. Lanzhou: Lanzhou University of Technology, 2018.
[19] LAGO L I, PONTA F L, OTERO A D.Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade[J]. Renewable energy, 2013, 59: 13-22.
[20] 孙瑞, 李春, 丁勤卫, 等. 大型风力机叶片模态性能及振动分析[J]. 热能动力工程, 2018, 33(10): 113-118,152.
SUN R, LI C, DING Q W, et al.Modal performance and vibration analysis of large wind turbine blades[J]. Thermal power engineering, 2018, 33(10): 113-118,152.
[21] 汪泉, 陈进, 王君, 等. 气动载荷作用下复合材料风力机叶片结构优化设计[J]. 机械工程学报, 2014, 50(9): 114-121.
WANG Q, CHEN J, WANG J, et al.Structural optimization design of composite wind turbine blade under aerodynamic load[J]. Journal of mechanical engineering, 2014, 50(9): 114-121.
[22] 张立, 缪维跑, 闫阳天, 等. 考虑自重影响的大型风力机复合材料叶片结构力学特性分析[J]. 中国电机工程学报, 2020, 40(19): 6272-6284.
ZHANG L, MIAO W P, YAN Y T, et al.Analysis of structural mechanical properties of composite blades of large wind turbine considering the influence of self weight[J]. Chinese journal of electrical engineering, 2020, 40(19): 6272-6284.
[23] LEI H, WANG Z, TONG L, et al.Experimental and numerical investigation on the macroscopic mechanical behavior of shape memory alloy hybrid composite with weak interface[J]. Composite structures, 2013, 101(15): 301-312.
[24] AURICCHIO F, TAYLOR R L, LUBLINER J.Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior[J]. Computer methods in applied mechanics and engineering, 1997, 146(3-4): 281-312.
基金
山东省自然科学基金(ZR2014AL011); 山东省高等学校科技计划(J13LB08); 青岛市科技发展计划(13-1-4-150-jch)