一体化运输安装船系泊状态下运动响应分析

丁红岩, 高扬, 张浦阳, 冯尊涛

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 214-219.

PDF(3019 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3019 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 214-219. DOI: 10.19912/j.0254-0096.tynxb.2021-0757

一体化运输安装船系泊状态下运动响应分析

  • 丁红岩1~3, 高扬1, 张浦阳1~3, 冯尊涛1
作者信息 +

MOTION RESPONSE ANALYSIS OF INTEGRATED TRANSPORT AND INSTALLATION VESSEL UNDER MOORING CONDITION

  • Ding Hongyan1-3, Gao Yang1, Zhang Puyang1-3, Feng Zuntao1
Author information +
文章历史 +

摘要

通过MOSES软件对运输安装船建立三维模型并模拟多种抛锚方式,对系泊状态下的船体进行时域分析。研究不同海况下不同数量锚链、不同抛锚方式的运动响应。结果表明,锚链数量及抛锚方式会影响浮体运动响应;8根锚链且交叉抛锚方式是最有利的系泊布置方式,纵摇、纵荡、垂荡加速度等运动响应均优于其他抛锚方式。

Abstract

The 3D model of the transport and installation ship was established by MOSES software and various anchoring methods were simulated. The time domain analysis of the hull under the moored state was carried out. The motion response of different anchor chain and different anchoring methods under different sea conditions were studied. The results show that the number of anchor chains and the way of anchoring will affect the motion response of floating body. The most favorable mooring arrangement mode is 8 chains and cross anchoring mode. The motion responses of pitch, swing, heave accelerations are better than that of other anchoring mode.

关键词

海上风电 / 筒型基础 / 锚缆 / 系泊 / 一步式运输安装

Key words

offshore wind power / bucket foundation / anchor cable / mooring / one-step transport and installation

引用本文

导出引用
丁红岩, 高扬, 张浦阳, 冯尊涛. 一体化运输安装船系泊状态下运动响应分析[J]. 太阳能学报. 2022, 43(12): 214-219 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0757
Ding Hongyan, Gao Yang, Zhang Puyang, Feng Zuntao. MOTION RESPONSE ANALYSIS OF INTEGRATED TRANSPORT AND INSTALLATION VESSEL UNDER MOORING CONDITION[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 214-219 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0757
中图分类号: U655.4   

参考文献

[1] 张浦阳, 石建超, 丁红岩, 等. 海上风电复合筒型基础结构浮运分析[J]. 太阳能学报, 2014, 35(11): 2313-2315.
ZHANG P Y, SHI J C, DING H Y, et al.Floating analysis of offshore wind power composite tube infrastructure[J].Acta energiae solaris sinica, 2014, 35(11): 2313-2315.
[2] 丁红岩, 霍思逊, 张浦阳, 等. 气浮筒型基础结构规则波中运动响应[J]. 船海工程, 2015, 44(2): 115-117.
DING H Y, HUO S X, ZHANG P Y, et al.Motion response of air buoy-type infrastructure in regular waves[J]. Ship & ocean engineering, 2015, 44(2): 115-117.
[3] 丁红岩, 韩彦青, 张浦阳, 等. 气压对海上风电一步式运输安装船稳性的影响[J]. 天津大学学报, 2017, 50(9):915-918.
DING H Y, HAN Y Q, ZHANG P Y, et al.Influence of air pressure on the stability of offshore wind power one-step transportation and installation ships[J]. Journal of Tianjin University, 2017, 50(9): 915-918.
[4] ZHANG P Y, LIANG D S, DING H Y.Floating state of a one-step integrated transportation vessel with two composite bucket foundations and off shore wind turbines[J]. Marine science and engineering, 2019, 7(8): 263.
[5] LI Y E, LE C H, DING H Y.Dynamic response for a submerged floating offshore wind turbine with different mooring configurations[J]. Journal of marine science and engineering, 2019, 7(4): 115 .
[6] ZHANG H M, KONG L B, GUAN W B.Dynamic response analysis of the equivalent water depth truncated point of the catenary mooring line[J]. China ocean engineering, 2017,31(1): 37-47.
[7] LIN Y S, KAO S H, YANG C H.Investigation of hydrodynamic forces for floating offshore wind turbines on spar buoys and tension leg platforms with the mooring systems in waves[J]. Applied sciences, 2019, 9(3): 608.
[8] ZHAO J, ZHANG L, WU H T.Motion performance and mooring system of a floating offshore wind turbine[J]. Journal of marine science and application, 2012, 11(3):328-334.
[9] 邵忠安. 沉管管段系泊状态下缆绳受力试验研究[D]. 大连: 大连理工大学, 2011.
SHAO Z A.Experimental research on the force of the cable in the mooring state of the immersed pipeline[D]. Dalian: Dalian University of Technology, 2011.
[10] GHAFARI H, DARDEL M.Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform[J]. Ocean engineering, 2018, 153: 319-332.
[11] 陈映宇, 张玉明, 刘海笑. 绷紧式系泊浮式风机动力响应及系泊优化[J]. 中国海洋平台, 2019, 34(6): 71-74.
CHEN Y Y, ZHANG Y M, LIU H X.Dynamic response and mooring optimization of tight-mooring floating fan[J]. China offshore platform, 2019, 34(6): 71-74.
[12] 袁杨. 超大型浮体水动力性能及系泊系统动力特性研究[D]. 上海: 上海交通大学, 2015.
YUAN Y.Study on hydrodynamic performance and mooring system dynamic characteristics of VLF[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[13] 肖元, 傅强, 邓燕飞, 等. 浮式风机系泊系统动力响应特性研究[J]. 中国造船, 2019, 60(4): 55-63.
XIAO Y, FU Q, DENG Y F, et al.Research on dynamic response characteristics of floating fan mooring system[J]. Shipbuilding of China, 2019, 60(4): 55-63.
[14] 陈徐均, 计淞, 陆凯, 等. 基于AQWA的系泊参数对单浮体动力响应的影响[J]. 武汉理工大学学报, 2021, 45(3): 459-463.
CHEN X J, JI S, LU K, et al.Influence of mooring parameters on dynamic response of single floating body based on AQWA[J]. Journal of Wuhan University of Technology, 2021, 45(3): 459-403.
[15] DNV-ST-0437, Loads and site conditions for wind turbines[S].

基金

国家自然科学基金(52171274)

PDF(3019 KB)

Accesses

Citation

Detail

段落导航
相关文章

/