将涡流发生器(VGs)流动控制理论引入到水轮机叶片设计领域,开展涡流发生器对潮流能水轮机叶片流动分离效应的抑制机理及水动力学特性研究。以NACA4418翼型为研究对象,分别建立基础翼型段和带VGs翼型段的潮流能水轮机翼型三维模型,应用CFD方法研究不同VGs排布方式、间距、高度以及长度参数对翼型段水动力性能的影响。结果表明:翼型段上安装VGs能有效减缓流动分离,合理的VGs排布方式可有效提高翼型的最大升力系数,正向排布优于反向排布,VGs间距为25 mm、高度为5 mm、长度为17 mm时对翼型段改善效果最佳,各组带VGs翼型最大阻力系数都增大约5%,翼型整体性能上升。利用水槽试验的方法验证仿真模型的准确性。此外,通过对翼型段进行二维流场分布以及VGs背流侧进行静压分布研究,进一步揭示VGs的作用机理。
Abstract
In this paper, the flow control theory of vortex generators(VGs) is introduced into the field of turbine blade design, and the inhibition mechanism and hydrodynamic characteristics of vortex generators(VGs) on flow separation effect of tidal current turbine hydrofoil are studied. NACA4418 hydrofoil is taken as the research object, the three-dimensional models with VGs and without VGs are established respectively. The effects of different parameters of VGs, such as VG arrangement, spacing, height and length, on the hydrodynamic performance of NACA4418 hydrofoil are studied by CFD method. The results show that VGs can effectively suppress the flow separation and improve the maximum lift coefficient of hydrofoil. The performance of forward VG arrangement is better than that of the reverse arrangement. The best improvement effect is obtained when the distance between VGs is 25 mm, the height is 5 mm and the length is 17 mm. Although the maximum drag coefficient of each hydrofoil with VGs is increased by about 5%, the overall performance of hydrofoil is increased. The accuracy of the simulation results is verified by flume tests. In addition, two-dimensional flow field distribution around hydrofoil section and static pressure distribution on VG's backflow side are studied to further reveal the mechanism of VGs.
关键词
流动分离 /
数值模拟 /
水槽试验 /
潮流能 /
涡流发生器 /
叶片翼型
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TAN K Z, MUHAMMED Z, KAMARUL A A.Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV Performance[J]. Chinese journal of aeronautics, 2019, 24(5): 577-583.
[2] LI S, ZHANG L, XU J, et al.Experimental investigation of a pitch-oscillating wind turbine airfoil with vortex generators[J]. Journal of renewable and sustainable energy, 2020, 12(6): 304-317.
[3] HAO L S, GAO C, SONG W P, et al.Airfoil flow control using vortex generators and a Gurney flap[J]. Proceedings of institution of mechanical engineers, part c: journal of mechanical engineering science, 2013, 227(12): 2701-2706.
[4] GAO L Y, ZHANG H, LIU Y Q, et al.Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines[J]. Renewable energy, 2015, 76(11): 303-311.
[5] 叶叶沛. 涡流发生器原理和设计[J]. 西飞科技, 1996, 8(2): 2-5.
YE Y P.Principle and design of vortex generators[J]. Xifei technology, 1996, 8(2): 2-5.
[6] WITOLD S, MAC G, CHRISTIAN B, et al.Increase in the annual energy production due to a retrofit of vortex generators on blades[J]. Wind energy, 2020, 23(3): 617-626.
[7] OMAR M F,MARC M, OMAR I, et al.Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators[J]. European journal of mechanics B/Fluids, 2016, 56(11): 82-96.
[8] ZHU C Y, WANG T G, CHEN J, et al.Effect of single-row and double-row passive vortex generators on the deep dynamic stall of a wind turbine airfoil[J]. Energies, 2020, 13(10): 2535-2548.
[9] 吴洲, 蒋笑, 王海鹏, 等. 涡流发生器对风力机叶片气动特性的影响[J]. 能源与节能, 2020, 25(2): 45-47.
WU Z, JIANG X, WANG H P, et al.Effect of vortex generator on aerodynamic characteristics of wind turbine blade[J]. Energy and energy conservation, 2020, 25(2): 45-47.
[10] 袁鹏, 王旭超, 王树杰, 等. 基于遗传算法的潮流能水轮机叶片翼型优化设计研究[J]. 中国海洋大学学报(自然科学版), 2018, 48(11): 125-131.
YUAN P, WANG X C, WANG S J, et al.Study on optimization of tidal turbine bldae based on genetic algorithm[J]. Periodical of Ocean University of China, 2018, 48(11): 125-131.
[11] 李宝山, 龚玉祥, 张建军, 等. 涡流发生器高度和长度对风力机翼型的影响研究[J]. 机电工程技术, 2020, 49(11): 148-150.
LI B S, GONG Y X, Zhang J J, et al.Research on the influence of height and length of vortex generators on wind turbine airfoil[J]. Mechanical & electrical engineering technology, 2020, 49(11): 148-150.
[12] ZHU C Y, WANG T G, WU J H.Numerical investigation of passive vortex generators on a wind turbine airfoil undergoing pitch oscillations[J]. Energies, 2019, 12(4): 654-666.
[13] 焦建东. 加装涡流发生器风力机叶片的气动性能研究[D]. 保定: 华北电力大学, 2014.
JIAO J D.The aerodynamic properties investigation of wind turbine blade with vortex generators[D]. Baoding: North China Electric Power University, 2014.
[14] LI X K, YANG K, WANG X D.Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance[J]. Energies, 2019, 12(5): 959-978.
[15] MUELLER-VAHL H, PECHLIVANOGLOU G, NAYERI C N, et al.Vortex generators for wind turbine blades: a combined wind tunnel and wind turbine parametric study[C]//Asme Turbo Expo: Turbine technical conference & exposition, 2012: 899-914.
[16] 王嘉诚. 基于CFD的三角翼式涡发生器设计与分析[D]. 南京: 南京航空航天大学, 2018.
WANG J C.Design and analysis of delta-wing vortex generators based on CFD[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[17] 周学志. 潮流能水平轴水轮机叶片性能分析与研究[D]. 青岛: 中国海洋大学, 2013.
ZHOU X Z.Analysis and study of horizontal axis tidal turbine blade performance[D]. Qingdao: Ocean University of China, 2013.
基金
山东省自然科学基金(ZR2021ME095); 国家重点研发计划(2018YFB1501903); 山东省重点研发计划(2019GGX103012)