水蒸气气氛下生物质与聚丙烯共气化产气特性数值分析

叶垚, 张俊霞, 李阳, 王巧丽

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 353-360.

PDF(1764 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1764 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 353-360. DOI: 10.19912/j.0254-0096.tynxb.2021-0784

水蒸气气氛下生物质与聚丙烯共气化产气特性数值分析

  • 叶垚, 张俊霞, 李阳, 王巧丽
作者信息 +

NUMERICAL ANALYSIS ON GAS PRODUCTION CHARACTERISTICS BASED ON CO-GASIFICATION OF BIOMASS AND POLYPROPYLENE IN STEAM

  • Ye Yao, Zhang Junxia, Li Yang, Wang Qiaoli
Author information +
文章历史 +

摘要

搭建生物质与废塑料共气化动力学模型,并用实验数据对其进行验证。选用6种生物质和聚丙烯作为共气化反应物,以水蒸气为气化剂,计算气化温度在300~1000 ℃之间、气化压强在0.1~0.8 MPa之间、聚丙烯和松木锯末质量比例在0.5~2.5之间,以及不同生物质类型等对生物质和聚丙烯共气化产气特性的影响。结果表明:松木锯末气化中添加聚丙烯后,最高产气量和最大产气速率增加,最高产气总流量提高21.46%,最高产气速率提高4.64%,H2和CO最高产量分别提高54.27%和79.51%;压强增加不利于提高共气化产气的H2和CO含量,有利于提高CH4含量;6种常见生物质和聚丙烯共气化产氢量大小顺序为:果皮>棉花秆≈玉米秸秆>杨树木屑>稻秆>条浒苔;聚丙烯掺混比率增加有利于提高H2、CO和CH4等组分产量。

Abstract

An kinetic model of biomass and polypropylene co-gasification was built, and the model was verified by experimental data, use six kinds of biomass and polypropylene as co-gasification reactants, steam as gasification agent. The effects of temperature between 300-1000 ℃, pressure between 0.1-0.8 MPa, mass ratio of polypropylene and pine sawdust between 0.5-2.5, and different biomass types on the co-gasification characteristics of biomass and polypropylene were calculated. After the addition of polypropylene in the gasification of pine sawdust, the maximum gas yield and maximum gas yield rate increased, the maximum total gas flow rate increased by 21.46%, the maximum gas yield rate increased by 4.64%, and the maximum H2 and CO yields increased by 54.27% and 79.51%, respectively. The increase of pressure is not conducive to the increase of H2 and CO content in co-gasification gas, but is beneficial to the increase of CH4 content. The order of H2 content from co-gasification of six types biomass and polypropylene is, peel > cotton stalk≈ corn straw>poplar sawdust>rice straw>Enteromorpha prolifera. It is beneficial to increase the yield of H2, CO and CH4 on increasing the blending ratio of polypropylene.

关键词

生物质 / 聚丙烯 / 气化 / 水蒸气 / 氢气

Key words

biomass / polypropylenes / gasification / steam / hydrogen

引用本文

导出引用
叶垚, 张俊霞, 李阳, 王巧丽. 水蒸气气氛下生物质与聚丙烯共气化产气特性数值分析[J]. 太阳能学报. 2023, 44(1): 353-360 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0784
Ye Yao, Zhang Junxia, Li Yang, Wang Qiaoli. NUMERICAL ANALYSIS ON GAS PRODUCTION CHARACTERISTICS BASED ON CO-GASIFICATION OF BIOMASS AND POLYPROPYLENE IN STEAM[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 353-360 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0784
中图分类号: TK6   

参考文献

[1] HASSAN H, LIM J K, HAMEED B H.Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil[J]. Bioresource technology, 2016, 221: 654-655.
[2] 肖睿, 董长青, 金保升, 等. 聚丙烯类废塑料空气气化特性试验研究[J]. 燃烧科学与技术, 2003(4): 348-352.
XIAO R, DONG C Q, JIN B S, et al.Experimental study on air gasification of polypropylene[J]. Journal of combustion science and technology, 2003(4): 348-352.
[3] 庞赟佶, 刘心明, 陈义胜, 等. 生物质炭对聚丙烯热解挥发分的催化重整分析[J]. 化学工程, 2019, 47(5): 6-11.
PANG Y J, LIU X M, CHEN Y S, et al.Catalytic reforming analysis of polypropylene pyrolysis volatile matter by biomass charcoal[J]. Chemical engineering, 2019, 47(5): 6-11.
[4] 许嘉, 许月, 陈俊俊, 等. 生物质炭对聚丙烯热解焦油降解作用分析[J]. 石油化工, 2019, 48(3): 273-278.
XU J, XU Y, CHEN J J, et al.Degradation analysis of polypropylene pyrolysis tar by carbon-based catalyst[J].Petrochemical technology, 2019, 48(3): 273-278.
[5] 宋祖威, 仲兆平, 张波, 等. 玉米秸秆和聚丙烯共催化热解试验[J]. 浙江大学学报(工学版), 2016, 50(2): 333-340.
SONG Z W, ZHONG Z P, ZHANG B, et al.Experimental study on catalytic co-pyrolysis of corn stalk and polypropylene[J]. Journal of Zhejiang University(engineering science), 2016, 50(2): 333-340.
[6] 陈宏鹏, 金光, 陈义胜, 等. 聚丙烯与玉米秸秆共热解的实验研究[J]. 应用化工, 2019, 48(5): 1038-1042.
CHEN H P, JIN G, CHEN Y S, et al.Experimental study on co-pyrolysis of polypropylene and corn stover[J].Applied chemical industry, 2019, 48(5): 1038-1042.
[7] ZHAO M, FLORIN N H, HARRIS A T.Mesoporous supported cobalt catalysts for enhanced hydrogen production during cellulose decomposition[J]. Applied catalysis B: environmental, 2010, 97(1): 142-150.
[8] AKUBO K, NAHIL M A, WILLIAMS P T.Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas[J]. Journal of the energy institute, 2019, 92(6): 1987-1996.
[9] 叶垚, 张俊霞, 伏军. 水蒸气气氛下生物质三组分制氢数值分析[J]. 冶金能源, 2021, 40(5): 27-33, 52.
YE Y, ZHANG J X, FU J.Numerical analysis on hydrogen production based on three-component of biomass in vapor water atmosphere[J]. Energy for metallurgical industry, 2021, 40(5): 27-33, 52.
[10] 李绍芬. 反应工程[M]. 3版. 北京: 化学工业出版社, 2013: 109-112.
LI S F.Reaction engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2013: 109-112.
[11] 陈世豪, 曹志凯, 师佳, 等. 基于ASPEN PLUS的固定床煤气化稳态模拟方法研究[J]. 煤炭学报, 2012, 37(S1): 167-172.
CHEN S H, CAO Z K, SHI J, et al.Steady-state simulation of fixed bed for coal gasification using ASPEN PLUS[J]. Journal of China Coal Society, 2012, 37(S1): 167-172.
[12] 郑志行, 张家元, 李谦, 等. 气流床煤气化的Aspen Plus建模: 平衡模型和动力学模型[J]. 化工进展, 2021, 40(8): 4165-4172.
ZHENG Z H, ZHANG J Y, LI Q, et al.Aspen Plus modeling of the entrained bed coal gasification: equilibrium model and kinetic model[J]. Chemical industry and engineering progress, 2021, 40(8): 4165-4172.
[13] PUIG G M, PIO D T, TARELHO L A C, et al. Simulation of biomass gasification in bubbling fluidized bed reactor using Aspen Plus®[J]. Energy conversion and management, 2021, 235: 113981.
[14] GÓMEZ M A, PORTEIRO J, PATIÑO D, et al. CFD modelling of thermal conversion and packed bed compaction in biomass combustion[J]. Fuel, 2014, 117: 716-732.
[15] 吕鹏梅, 常杰, 熊祖鸿, 等. 生物质在流化床中的空气-水蒸汽气化研究[J]. 燃料化学学报, 2003, 31(4): 305-310.
LYU P M, CHANG J, XIONG Z H, et al.An experimental research on biomass air-stream gasification in a fluidized bed[J]. Journal of fuel chemistry and technology, 2003, 31(4): 305-310.
[16] ALVAREZ J, KUMAGAI S, WU C F, et al.Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification[J]. International journal of hydrogen energy, 2014, 39(21): 10883-10891.
[17] 刘凌沁. 生物质气化试验与Aspen Plus模拟研究[D]. 南京: 东南大学, 2016.
LIU L Q.Experimental research and simulation based on ASPEN PLUS of biomass gasification in fluidized bed[D]. Nanjing: Southeast University, 2016.
[18] 陈汉平, 赵向富, 米铁, 等. 基于ASPEN PLUS平台的生物质气化模拟[J]. 华中科技大学学报(自然科学版), 2007, 35(9): 49-52.
CHEN H P, ZHAO X F, MI T, et al.Simulation of biomass gasification by ASPEN PLUS[J]. Journal of Huazhong University of Science and Technology(natural science edition), 2007, 35(9): 49-52.
[19] 曹斌奇, 刘运权, 王夺. 松木屑在氧气-水蒸气-二氧化碳氛围下的气化模拟研究[J]. 生物质化学工程, 2017, 51(3): 14-20.
CAO B Q, LIU Y Q, WANG D.Simulation of pine sawdust gasification with oxygen, steamand carbon dioxide as gasifying agents[J]. Biomass chemical engineering, 2017, 51(3): 14-20.
[20] 吴家桦, 沈来宏, 王雷, 等. 串行流化床生物质气化制氢试验研究[J]. 太阳能学报, 2010, 31(2): 242-247.
WU J H, SHEN L H, WANG L, et al.Experiment study on hydrogen production in interconnection fluidized beds of biomass gasification[J]. Acta energiae solaris sinica, 2010, 31(2): 242-247.
[21] 张婷婷, 白宗庆, 侯冉冉, 等. 煤与废塑料共热解特性研究进展[J]. 化工进展, 2021, 40(5): 2461-2470.
ZHANG T T, BAI Z Q, HOU R R, et al.Research progress on co-pyrolysis characteristics of coal and waste plastics[J]. Chemical industry and engineering progress, 2021, 40(5): 2461-2470.
[22] 李翔宇. 木质纤维素与塑料废弃物共催化热解制备芳烃和烯烃研究[D]. 北京: 清华大学, 2015.
LI X Y.Aromatic and olefin production by catalytic co-pyrolysis of lignocellulose and plastic wastes[D]. Beijing: Tsinghua University, 2015.
[23] 毛俏婷, 胡俊豪, 赵雨佳, 等. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报, 2020, 48(3): 286-292.
MAO Q T, HU J H, ZHAO Y J, et al.Syne rgistic effect during biomass and waste plastics co-pyrolysis[J]. Journal of fuel chemistry and technology, 2020, 48(3): 286-292.
[24] 刘世奇, 张素平, 于泰莅, 等. 生物质与塑料共热解协同作用研究[J]. 林产化学与工业, 2019, 39(3): 34-42.
LIU S Q, ZHANG S P, YU T L, et al.Synergistic effect of co-pyrolysis of biomass and plastics[J]. Chemistry and industry of forest products, 2019, 39(3): 34-42.
[25] 李静. 内在碱金属钠对稻秆与塑料PE共气化产气特性的影响[J]. 可再生能源, 2016, 34(5): 749-753.
LI J.The effect of straw alkali metal on the gas production behaviorduring biomass derived fuel gasification[J].Renewable energy resources, 2016, 34(5): 749-753.
[26] 陈超. 生物质多级高温气化定向制备合成气的特性研究[D]. 杭州: 浙江大学, 2015.
CHEN C.Study on multi-staged high temperature gasification of biomass for syn-gas[D]. Hangzhou: Zhejiang University, 2015.
[27] 林骁驰. 大型海藻生物质与稻壳共热解耦合机理研究[D]. 镇江: 江苏大学, 2017.
LIN X C.Study on coupling mechanism of co-pyrolysis of seaweed biomass and rice husk[D]. Zhenjiang: Jiangsu University, 2017.

基金

国家自然科学基金(51866015); 湖南省教育厅科学研究重点项目(20A448); 湖南省自然科学基金(2021JJ30633)

PDF(1764 KB)

Accesses

Citation

Detail

段落导航
相关文章

/