半潜式波浪能养殖平台与系泊系统的耦合动力分析

黄硕, 梁诗琪, 盛松伟, 马山, 陈纪康, 李建东

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 463-471.

PDF(3257 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3257 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 463-471. DOI: 10.19912/j.0254-0096.tynxb.2021-0786

半潜式波浪能养殖平台与系泊系统的耦合动力分析

  • 黄硕1,2, 梁诗琪1,2, 盛松伟3, 马山4, 陈纪康4, 李建东4
作者信息 +

DYNAMIC ANALYSIS OF COUPLED SEMI-SUBMERSIBLE WAVE ENERGY AQUACULTURE PLATFORM AND MOORING SYSTEM

  • Huang Shuo1,2, Liang Shiqi1,2, Sheng Songwei3, Ma Shan4, Chen Jikang4, Li Jiandong4
Author information +
文章历史 +

摘要

以“澎湖号”半潜式波浪能养殖平台为研究对象,开展养殖平台及其系泊系统在浪、流联合作用下水动力性能的研究。基于三维势流理论,应用一阶泰勒展开边界元方法对其频域水动力进行计算,研究不同浪向下平台的运动响应和二阶波浪漂移力。采用间接时域分析方法和异步耦合方法实现平台和系泊系统的时域耦合动力求解,对不同浪流组合工况下平台的时域运动与锚链张力进行分析。研究表明,在南海常规海况中平台稳定性较好,立柱间水动力干扰尤为明显,顺浪时平台所受的二阶波浪漂移力最小。在与系泊系统的耦合作用下,平台的横摇与纵摇运动受入射波浪向的影响较大,入射波波高对顺浪下的平台横摇运动和横浪与斜浪下平台纵摇运动影响明显。

Abstract

The semi-submersible wave energy aquaculture platform "Penghu" is located in the open sea area, with large waves and rapid currents. Therefore, it is required that the platform not only meets the needs of aquaculture, but also has the ability of efficient power generation as well as wind and wave resistance. It is of great significance for the engineering safety and design to study the hydrodynamics characteristics of the aquaculture platform and its mooring system under the combined action of waves and currents. Based on the three-dimensional potential flow theory, the first-order Taylor expansion boundary element method is used to calculate the hydrodynamics characteristics in the frequency domain, and the first-order wave force and second-order wave drift force of the platform under waves from different directions are studied. Indirect time-domain analysis method and asynchronous coupling method are used to solve the time-domain coupling dynamic solution of the platform and its mooring system. The time-domain motion of the platform and the tension of mooring lines under different wave-current conditions are analyzed. The results show that under conventional sea conditions in the South China Sea the platform has great hydrodynamic performance with obvious hydrodynamic interference between columns, and the second-order wave drift force are the least when the platform stays in following seas. Under the coupling action with the mooring system, the pitch and roll motion responses of the platform are most affected by the incident wave angle, the roll motion response of the platform is most affected by the significant wave height when it performs in following sea, while the pitch motion response is most affected by significant wave height when it performs in beam sea or under oblique waves.

关键词

波浪能 / 频域分析 / 时域分析 / 养殖平台 / 系泊系统

Key words

wave energy / frequency domain analysis / time domain analysis / aquaculture platform / mooring system

引用本文

导出引用
黄硕, 梁诗琪, 盛松伟, 马山, 陈纪康, 李建东. 半潜式波浪能养殖平台与系泊系统的耦合动力分析[J]. 太阳能学报. 2022, 43(8): 463-471 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0786
Huang Shuo, Liang Shiqi, Sheng Songwei, Ma Shan, Chen Jikang, Li Jiandong. DYNAMIC ANALYSIS OF COUPLED SEMI-SUBMERSIBLE WAVE ENERGY AQUACULTURE PLATFORM AND MOORING SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 463-471 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0786
中图分类号: O352   

参考文献

[1] 邓炳林. 深远海智能养殖平台最新发展[J]. 中国船检, 2020(2): 32-36.
DENG B L.Latest development of deep-sea intelligent aquaculture platform[J]. China ship survey, 2020(2): 32-36.
[2] 陈坤鑫, 盛松伟, 张亚群, 等. 海工型渔业养殖网箱技术现状与发展趋势[J]. 新能源进展, 2020, 8(5): 440-446.
CHEN K X, SHENG S W, ZHANG Y Q, et al.Technology status and development trend of ocean engineering aquaculture cage[J]. Advances in new renewable energy, 2020, 8(5): 440-446.
[3] 陈纪康, 段文洋, 李建东, 等. 泰勒展开边界元法的船舶兴波阻力计算[J]. 哈尔滨工程大学学报, 2019, 40(5): 872-877.
CHEN J K, DUAN W Y, LI J D, et al.Numerical calculation on wave-making resistance based on Taylor expansion boundary element method[J]. Journal of Harbin Engineering University, 2019, 40(5): 872-877.
[4] 段文洋, 陈纪康, 赵彬彬. 基于泰勒展开边界元法的深水浮体二阶平均漂移力计算[J]. 哈尔滨工程大学学报, 2015, 36(3): 302-306.
DUAN W Y, CHEN J K, ZHAO B B.Calculation of second-order mean drift loads for the deep water floating body based on the Taylor expansion boundary element method[J]. Journal of Harbin Engineering University, 2015, 36(3): 302-306.
[5] DUAN W Y.Taylor expansion boundary element method for floating body hydrodynamics[C]//Proceedings of the 27th International Workshop on Water Waves and Floating Bodies,Copenhagen, Denmark, 2012.
[6] 陈纪康, 王慧, 马山, 等. 基于泰勒展开边界元方法的某半潜式平台水动力计算分析[J]. 哈尔滨工程大学学报, 2018, 39(9): 1431-1437.
CHEN J K,WANG H,MA S,et al.Hydrodynamic calculation and analysis on a semi-submersible platform based on Taylor expansion boundary element method[J]. Journal of Harbin Engineering University, 2018, 39(9): 1431-1437.
[7] 韦斯俊. 浮式结构物系泊系统时域非线性耦合分析[D]. 哈尔滨: 哈尔滨工业大学, 2014.
WEI S J.Nonlinear time-domain coupled analysis of mooring systems of floating structures[D]. Harbin: Harbin Institute of Technology, 2014.
[8] 袁梦. 深海浮式结构物系泊系统的非线性时域分析[D]. 上海: 上海交通大学,2011.
YUAN M.Time domain nonlinear analysis of the mooring system of deep-water floating structures[D]. Shanghai: Shanghai Jiao Tong University, 2011.
[9] 段文洋, 戴遗山. 二维浮体大幅运动水动力物面非线性时域解[J]. 哈尔滨工程大学学报, 1997, 18(5): 4-10.
DUAN W Y,DAI Y S.Nonlinear time-domain solution of hydrodynamic forces ona 2-D floating body undergoing large amplitude motions[J]. Journal of Harbin Engineering University, 1997, 18(5): 4-10.
[10] 申亮, 朱仁传, 缪国平, 等. 深水时域格林函数的实用数值计算[J]. 水动力学研究与进展A辑, 2007, 22(3): 380-386.
SHEN L, ZHU R C, MIAO G P, et al.A practical numerical method for deep water time-domain Green function[J]. Journal of hydrodynamics, 2007, 22(3): 380-386.
[11] 刘文玺, 周其斗, 张纬康, 等. 浮体与系泊系统的耦合动力分析[J]. 船舶力学, 2014, 18(8): 940-957.
LIU W X, ZHOU Q D, ZHANG W K, et al.Dynamic analysis of the coupled floating body/mooring system[J]. Journal of ship mechanics, 2014, 18(8): 940-957.
[12] 章健军, 马山, 段文洋, 等. 系泊缆索动力分析中Newmark-β迭代解法的计算效率[J]. 中国海洋平台, 2018, 33(5): 63-69, 80.
ZHANG J J, MA S, DUAN W Y, et al.Computing efficiency of Newmark-β iteration method used in dynamic analysis of mooring lines[J]. China offshore platform, 2018, 33(5): 63-69, 80.
[13] 王彬, 杨庆山. 弱耦合算法的实现及其应用[J]. 工程力学, 2008, 25(12): 48-52, 59.
WANG B,YANG Q S.The realization and application of loosely coupled algorithm[J]. Engineering mechanics, 2008, 25(12): 48-52, 59.
[14] JING X, WEBSTER W C, XU Q, et al.Coupled dynamic modeling of a moored floating platform with riser[C]//Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, Netherlands, 2011.
[15] 马山, 段文洋. 深海浮动式平台与系泊/立管系统动力响应异步耦合分析研究[C]//第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议论文集, 中国, 舟山, 2013: 786-792.
MA S,DUAN W Y.Asynchronous coupling analysis of dynamic response between deepwater floating platform and mooring/riser system[C]//Proceedings of the 25th National Conference on Hydrodynamics & 12th National Congress on Hydrodynamics, Zhoushan, China, 2013: 786-792.
[16] 肖丽娜, 赵仲秋, 许靖. 深远海渔业养殖平台载荷计算分析[J]. 船舶标准化与质量, 2019(1): 52-57.
XIAO L N, ZHAO Z Q, XU J.Load calculation and analysis of deep sea fishery platform[J]. Shipbuilding standardization & quality, 2019(1): 52-57.
[17] 段文洋, 王隶加, 陈纪康, 等. 基于泰勒展开边界元法的近水面潜艇垂向二阶波浪力(矩)计算[J]. 哈尔滨工程大学学报, 2017, 38(1): 8-12.
DUAN W Y,WANG L J,CHEN J K,et al.Calculation of vertical second-order drift loads on submarine floating near the free water surface based on Taylor expansion boundary element method[J]. Journal of Harbin Engineering University, 2017, 38(1): 8-12.
[18] 欧绍武, 付世晓. 浮式结构物二阶波浪力求解方法比较研究[J]. 海洋工程, 2017, 35(4): 100-109.
OU S W, FU S X.A comparative study on the numerical methods of second-order drift forces on floating structures[J]. The ocean engineering, 2017, 35(4): 100-109.
[19] 朱仁传, 缪国平. 船舶在波浪上的运动理论[M]. 上海: 上海交通大学出版社, 2019.
ZHU R C, MIAO G P.Theory of ship motions in waves[M]. Shanghai: Shanghai Jiao Tong University Press, 2019.
[20] 何协. 系泊半潜平台水动力模拟及耦合运动高效分析研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
HE X.Hydrodynamic and computational efficiency study of coupled motions for moored semi-submersible platform[D]. Harbin: Harbin Engineering University, 2020.
[21] CUMMINS W E.The impulse response function and ship motions[R]. David Taylor Model Basin Washington DC,1962.
[22] 孙艳龙. FDPSO二阶波浪力与运动响应计算及试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
SUN Y L.Numerical and experimental investigation of second order wave force and motion response of FDPSO[D]. Harbin: Harbin Engineering University, 2017.
[23] 半潜式波浪能养殖平台水池实验报告[R].半潜式波浪能养殖平台水池实验报告[R]. 广州: 中国科学院广州能源研究所, 2017.
Report of pool experiment of semi-submersible wave energy aquaculture platform[R]. Guangzhou: Guangzhou Institute of Energy Conversion,Report of pool experiment of semi-submersible wave energy aquaculture platform[R]. Guangzhou: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 2017.
[24] 大万山岛波浪能示范工程项目可行性研究报[R].大万山岛波浪能示范工程项目可行性研究报[R]. 中交第四航务勘察设计研究院有限公司, 2017.
Feasibility study report of Dawanshan Island wave energy demonstration project[R]. CCCC-FHDI Engineering CoFeasibility study report of Dawanshan Island wave energy demonstration project[R]. CCCC-FHDI Engineering Co., Ltd., 2017.
[25] American Petroleum Institute.Design and analysis of station-keeping systems for floating structures[S]. API recommended practiced 2SK, 2005.

基金

广东省重点领域研发计划(2021B0202070002); 广东省基础与应用基础研究基金(2022A1515011285); 广东省促进经济高质量发展专项(GDNRC[2020]015)

PDF(3257 KB)

Accesses

Citation

Detail

段落导航
相关文章

/