利用CGSim软件对定向凝固多晶硅从长晶过程开始到退火过程结束进行瞬态数值模拟,研究不同退火温度和退火时间对多晶硅锭内热应力及位错密度的影响。通过软件中热弹性应力非稳态模型(Haasen-Alexander-Sumino模型)计算出位错和Von-Mises应力。结果表明:随着退火温度的升高和退火时间的增加,热应力及位错增殖速率的逐渐减小,在退火1 h后热应力和位错增殖速率大幅减小,退火3 h后减小效果减弱。高温退火时热应力和位错密度低于低温退火,在1250 ℃下退火3 h是比较合适的方案。
Abstract
With CGSim software, this study performs transient numerical simulation of the process of directionally solidified polysilicon from the beginning of crystal growth to the end of annealing, and investigates the effects of different annealing temperatures and time on the thermal stress and dislocation density in polysilicon ingots. The dislocation and Von-Mises stress are calculated by using an unsteady model of the thermo-elastic stresses (Haasen-Alexander-Sumino model). The results of this study demonstrated that with the increase in annealing temperatures and time, the thermal stress and dislocation multiplication rate will reduce gradually, after annealing for 1 h, they will decrease greatly, and after annealing for 1 h, the decrease effect will be greatly weakened. The thermal stress and dislocation density under high-temperature annealing are lower than under low-temperature annealing, and annealing at 1250 ℃ for 3 h is a suitable scheme.
关键词
数值模拟 /
多晶硅 /
应力 /
硅锭 /
定向凝固 /
位错
Key words
computer simulation /
polysilicon /
stresses /
silicon ingots /
directional solidification /
dislocation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GU X, YU X, GUO K, et al.Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: towards high efficiency and low cost silicon solar cells[J]. Solar energy materials and solar cells, 2012, 101: 95-101.
[2] 梁宗存. 多晶硅与硅片生产技术[M]. 北京: 化学工业出版社, 2013: 125.
LIANG Z C.Polysilicon and silicon wafer production technology[M]. Beijing: Chemical Industry Press, 2013: 125.
[3] WANG S, FANG H S, ZHAO C J, et al.Gas flow optimization during the cooling of multicrystalline silicon ingot[J]. International journal of heat and mass transfer, 2015, 84: 370-375.
[4] SRINIVASAN M, RAMASAMY P.Numerical study on various types of stress and dislocation generation in multi-crystalline silicon at various growth stages for PV applications[J]. Engineering with computers, 2017, 33(2): 207-218.
[5] NAKANO S, CHEN X J, GAO B, et al.Numerical analysis of cooling rate dependence on dislocation density in multicrystalline silicon for solar cells[J]. Journal of crystal growth, 2011, 318(1): 280-282.
[6] JIPTNER K, FUKUZAWA M, MIYAMURA Y, et al.Evaluation of residual strain in directional solidified mono-Si ingots[J]. Physica status solidi C, 2013, 10: 141-145.
[7] SMIRNOVA O V, MAMEDOV V M, KALAEV V V.Numerical modeling of stress and dislocations in si ingots grown by seed-directional solidification and comparison to experimental data[J]. Crystal growth & design, 2014, 14(11): 5532-5536.
[8] ARAVINDAN G, SRINIVASAN M, ARAVINTH K, et al.Computation modelling on von mises stress in multi-crystalline silicon ingot for PV application[J]. AIP conference proceedings, 2016, 1731(1): 11-16.
[9] NAGARAJAN S G, SANMUGAVEL S, KESAVAN V, et al.Influence of additional insulation block on multi-crystalline silicon ingot growth process for PV applications[J]. Journal of crystal growth, 2019, 516: 10-16.
[10] MA W C, ZHONG G X, SUN L, et al.Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J]. Solar energy materials and solar cells, 2012, 100: 231-238.
[11] GURUSAMY A, MANICKAM S, KARUPPANAN A, et al.Simulation studies of annealing effect on a mc-Si ingot for photovoltaic application[J]. Silicon, 2018, 10(3): 1021-1033.
[12] 朱徐立, 徐隆, 苏骑, 等. 冶金法提纯多晶硅退火工艺优化的数学模型分析与试验验证[J]. 宇航材料工艺, 2019, 49(4): 23-27.
ZHU X L, XU L, SU Q, et al.Mathematical model analysis and experimental verification of polycrystalline-silicon annealing optimization by metallurgical method[J]. Aerospace materials & technology, 2019, 49(4): 23-27.
[13] SHEN H Y, DENG X C, WEI K X, et al.Effect of high temperature annealing on crystal structure and electrical properties of multicrystalline silicon by the metallurgical method[J]. Silicon, 2020, 12(9): 2099-2106.
[14] DING C L, HUANG M L, ZHONG G X, et al.A design of crucible susceptor for the seeds preservation during a seeded directional solidification process[J]. Journal of crystal growth, 2014, 387: 73-80.
[15] SANMUGAVEL S, SRINIVASAN M, ARAVINTH K, et al.Numerical investigations on hot-zone modified ds furnace for mc-Si growth process[J]. AIP conference proceedings, 2016, 1731(1): 32-38.
[16] WU Z Y, ZHONG G X, ZHANG Z Y, et al.Optimization of the high-performance multi-crystalline silicon solidification process by insulation partition design using transient global simulations[J]. Journal of crystal growth, 2015, 426: 110-116.
[17] ALEXANDER H.Dislocations and plastic flow in the diamond structure[M]. Pittsburgh: Academic Press, 1969: 127-158.
[18] KESAVAN V, SRINIVASAN M, RAMASAMY P.Numerical investigation of directional solidification process for improving multi-crystalline silicon ingot quality for photovoltaic applications[J]. Materials letters, 2019, 241: 178-183.
[19] WANG S, FANG H S, WEI G H, et al.Transient analysis of the cooling process and influence of bottom insulation on the stress in the multicrystalline silicon ingot[J]. Crystal research and technology, 2013, 48(7): 454-463.
[20] LYU G Q, CHEN D T, YANG X, et al.Numerical simulation and experimental verification of vacuum directional solidification process for multicrystalline silicon[J]. Vacuum, 2015, 116: 96-103.
[21] DADZIS K, BEHNKEN H, BÄHR T, et al. Numerical simulation of stresses and dislocations in quasi-mono silicon[J]. Journal of crystal growth, 2016, 450: 14-21.
[22] GAOYJ, HUANG L L, ZHOU W Q, et al. Phase field crystal simulation of subgrain boundary annihilation and dislocation rotation mechanism under strain at high temperature[J]. Scientia sinica technologica, 2015, 45(3): 306-321.
[23] NGUYEN T H T, CHEN J, HU C, et al. Numerical analysis of thermal stress and dislocation density distributions in large size multi-crystalline silicon ingots during the seeded growth process[J]. Journal of crystal growth, 2017, 468: 316-320.