针对风电机组偏航制动器制动不稳定问题,基于ABAQUS软件开展偏航制动器制动稳定性分析。运用复特征值分析法和不稳定倾向系数TOI值,分析制动压力、摩擦系数、偏航速度、弹性模量以及开槽方式等对制动稳定性的影响。基于全因子试验及Design-expert软件建立不稳定倾向系数TOI值响应面模型,并开展相关参数优化。研究表明:对制动稳定性具有显著影响的因素是摩擦系数、偏航制动缸弹性模量、摩擦片弹性模量;开双槽的摩擦片对制动稳定性影响显著,开单槽影响较小;制动稳定性受制动压力与偏航速度影响很小;参数优化后的偏航制动器制动不稳定系数降低73.7%。该研究结论可为偏航制动器设计、开发提供理论指导。
Abstract
Aiming at the problem of yaw brake instability of wind turbine, the yaw brake stability analysis was carried out based on ABAQUS software. The influence of braking pressure, friction coefficient, yaw speed, elastic modulus and slotting mode on braking stability was analyzed by using complex eigenvalue analysis and instability tendency coefficient TOI value. Based on the full factor test and Design-expert software, the TOI value response surface model of the instability tendency coefficient was established, and the relevant parameters were optimized. The results show that the friction coefficient, the elastic modulus of yaw brake cylinder and the elastic modulus of friction plate have significant influence on the braking stability. The friction plate with double groove has significant influence on the braking stability, while thesingle groove has a little influence. Braking stability is little affected by braking pressure and yaw speed. The braking instability coefficient of yaw brake after parameter optimization is reduced by 73.7%. The research conclusion can provide theoretical guidance for the design and development of yaw brake.
关键词
风电机组 /
偏航 /
制动器 /
稳定性 /
复特征值
Key words
wind turbines /
yaw /
brake /
stability /
complex eigenvalue
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG S J, WEI J, CHEN X, ZHAO Y H.China in global wind power development: role, status and impact[J]. Renewable & sustainable energy reviews, 2020, 127: 1-16.
[2] DAI J C, YANG X, WEN L.Development of wind power industry in China: a comprehensive assessment[J]. Renewable & sustainable energy reviews, 2018, 97: 156-164.
[3] KADO N, SATO N, TADOKORO C, et al.Effect of yaw angle misalignment on brake noise and brake time in a pad-on-disc-type apparatus with unidirectional compliance for pad support[J]. Tribology international, 2014, 78: 41-46.
[4] 董慧丽, 鲍久圣, 阴妍, 等. 盘式制动器摩擦噪声特性的试验分析[J]. 摩擦学学报, 2020, 40(2): 175-184.
DONG H L, BAO J S, YIN Y, et al.Experimental analysis on friction noise of disc brake[J]. Tribology, 2020, 40(2): 175-184.
[5] FAN N, CHEN G X, QIAN L M.Analysis of squeaking on ceramic hip endoprosthesis using the complex eigenvalue method[J]. Wear, 2011, 271(9-10): 2305-2312.
[6] 詹斌, 孙涛, 沈炎武, 等. 基于复特征值分析的某盘式制动器制动尖叫问题改进[J]. 振动与冲击, 2021, 40(5): 108-112, 135.
ZHAN B, SUN T, SHEN Y W, et al.Improvement of brake squeal of a disc brake based on complex eigenvalue analysis[J]. Journal of vibration and shock, 2021, 40(5): 108-112, 135.
[7] 张立军, 陈前银, 刁坤, 等. 摩擦衬片包角对盘式制动器尖叫影响的仿真分析[J]. 振动与冲击, 2016, 35(5): 59-64.
ZHANG L J, CHEN Q Y, DIAO K, et al.Simulation analysis for effect of pad lining arc on disc brake squeal[J]. Journal of vibration and shock, 2016, 35(5): 59-64.
[8] 张森, 章健. 汽车通风盘式制动器的流固热多物理场耦合建模与分析[J]. 机械工程学报, 2019, 55(8): 154-164.
ZHANG S, ZHANG J.Modeling and analysis on fluid-solid-thermal physical field coupling of ventilated disc brake[J]. Journal of mechanical engineering, 2019, 55(8): 154-164.
[9] KIM C, KWON Y, KIM D.Analysis of low-frequency squeal in automotive disc brake by optimizing groove and caliper shapes[J]. International journal of precision engineering & manufacturing, 2018, 19(4): 505-512.
[10] 黄泽好, 张振华, 黄旭, 等. 鼓式制动器制动不稳定时变特性分析[J]. 工程设计学报, 2019, 26(6): 714-721.
HUANG Z H, ZHANG Z H, HUANG X, et al.Analysis of time-varying characteristics of braking instability of drum brake[J]. Chinese journal of engineering design, 2019, 26(6): 714-721.
[11] 胡艳,黄盼盼. 基于复特征值法的轮盘制动尖叫噪声研究[J]. 铁道机车车辆, 2015, 35(1): 54-56.
HU Y, HUANG P P.Screaming noise study of wheel-disc brake system based on complex eigenvalue method[J]. Railway locomotive & car, 2015, 35(1): 54-56.
[12] 赵康康. 风电机组偏航制动器制动稳定性及其疲劳寿命分析[D]. 湘潭: 湖南科技大学, 2019.
ZHAO K K.Braking stability and fatigue life analysis of wind turbine yaw brake[D]. Xiangtan: Hunan University of Science and Technology, 2019.
[13] 吕辉, 于德介, 谢展, 等. 基于响应面法的汽车盘式制动器稳定性优化设计[J]. 机械工程学报, 2013, 49(9): 55-60.
LYU H, YU D J, XIE Z, et al.Optimization of vehicle disc brakes stability based on response surface method[J]. Journal of mechanical engineering, 2013, 49(9): 55-60.
[14] 张保丰, 郑民欣, 班新星, 等. 风电制动片材料冲击性能及摩擦性能分析[J]. 机械设计与制造, 2011(12): 217-219.
ZHANG B F, ZHENG M X, BAN X X, et al.Analysis on impact and friction properties of wind turbine brake pad material[J]. Machinery design & manufacture, 2011(12): 217-219.
[15] XIE M S, ZHANG G R, LI J H, et al.Brake pad taper wear on brake moan noise[J]. International journal of automotive technology, 2014, 15(4): 565-571.
[16] 庞明, 张立军, 孟德建, 等. 鼓式制动器摩擦尖叫的复模态模型与影响因素研究[J]. 振动与冲击, 2014, 33(8): 35-41.
PANG M, ZHANG L J, MENG D J, et al.Complex modal analysis model for frictional squeal of an automotive drum brake and its affect factors[J]. Journal of vibration and shock, 2014, 33(8): 35-41.
基金
国家重点研发计划(2016YFF0203400); 湖南省自然科学基金面上项目(2020JJ4026)