针对含裂纹损伤风力机在运行过程中产生的失效现象,将切变来流作为入口条件,基于流固耦合原理,分析含不同形式裂纹损伤的风力机叶片应力分布规律。通过无人机现场实验得知,裂纹主要集中于叶根(r/R=0.10截面)和叶中(r/R=0.50截面)后缘部位。单叶片在30°方位角时应力最大,额定风速下分布于叶根的裂纹受力最大,为33.34 MPa。强风风速下分布于叶中的裂纹受力最大,为44.31 MPa。重力载荷主要影响叶根部位的受力,气动载荷则主要作用于叶中,风速越大,叶中部位的裂纹越容易产生扩展。同时,沿弦向分布的裂纹,其扩展趋势最强。对于叶根处裂纹而言,若使叶片产生失效,裂纹长度需达到弦长的1/2、深度需达到叶片厚度的1/2;对于叶中处裂纹而言,若使叶片产生失效,裂纹长度需达到弦长的3/8、深度需达到叶片厚度的1/3。
Abstract
In view of the failure phenomenon of wind turbine with crack damage during operation, the shear flow was taken as the inlet condition, and the stress distribution law of wind turbine blade with different forms of crack damage was analyzed based on the principle of fluid-structure coupling. Through the field experiment of UAV (unmanned aerial vehicle),it was found that the cracks were mainly concentrated in the blade root (r/R=0.10 section) and the trailing edge of the blade middle (r/R=0.50 section). The stress of single blade reaches the maximum at 30° azimuth angle, and the crack stress at blade root reaches the maximum at rated wind speed, which is 33.34 MPa. Under strong wind speed, the crack force distributed in the blade is the maximum, which is 44.31 MPa. The gravity load mainly affects the force at the root of the blade, while the aerodynamic load mainly acts on the blade. The higher the wind speed is, the easier the crack in the middle part of the blade is to propagate. At the same time, the crack distributed along the chord has the strongest growth tendency. For the crack at the blade root, if the blade fails, the crack length shall be 1/2 of the chord length and the depth shall reach 1/2 of the blade thickness; for the crack at the middle of the blade, if the blade fails, the crack length shall reach 3/8 of the chord length and the depth shall reach 1/3 of the blade thickness.
关键词
风力机叶片 /
裂纹 /
应力分析 /
切变流 /
无人机检测
Key words
wind turbine blades /
cracks /
stress analysis /
shear flow /
UAV detection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 53-67.
CHEN X F, GUO Y J, XU C B, et al.Review of fault diagnosis and health monitoring for wind power equipment[J]. China mechanical engineering, 2020, 31(2): 53-67.
[2] 杨瑞, 全佩, 张康康. 风切变效应对风力机叶片结构性能的影响分析[J]. 机械设计与制造, 2021(5): 172-175.
YANG R,QUAN P, ZHANG K K.Analysis of influence of wind shear effect on structural performance of wind turbine blades[J]. Machinery design and manufacture, 2021(5): 172-175.
[3] CHENG Y, XUE Z, JIANG T, et al.Numerical simulation on dynamic response of flexible multi-body tower blade coupling in large wind turbine[J]. Energy, 2018, 152(Jun. 1): 601-612.
[4] 温斌荣, 魏莎, 魏克湘, 等. 风切变和塔影效应对风力机输出功率的影响[J]. 机械工程学报, 2018, 54(10): 124-132.
WEN B R, WEI S, WEI K X, et al.Influences of wind shear and tower shadow on the power output of wind turbine[J]. Journal of mechanical engineering, 2018, 54(10): 124-132.
[5] 陈晓明, 康顺. 偏航和风切变下风力机气动特性的研究[J]. 太阳能学报, 2015, 36(5): 1105-1111.
CHEN X M, KANG S.Research on aerodynamic characteristics of wind turbines under yaw and wind shear[J]. Acta energies solaris sinica, 2015, 36(5): 1105-1111.
[6] 王胜军, 张明明, 刘梦亭, 等. 切变入流风况下风力机尾流特性研究[J]. 工程热物理学报, 2014(8): 1521-1525.
WANG S J, ZHANG M M, LIU M T, et al.Research on wake characteristics of wind turbine under shear inflow wind condition[J]. Journal of engineering thermophysics, 2014(8): 1521-1525.
[7] SANTO G, PEETERS M, PAEPEGEM W V, et al.Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation[J]. Renewable energy, 2019, 140(9): 212-226.
[8] 顾永强, 冯锦飞, 贾宝华, 等. 损伤风机叶片模态频率变化规律的试验研究[J]. 噪声与振动控制, 2020, 40(3): 89-92.
GU Y Q, FENG J F, JIA B H, et al.Experimental study on the variation law of modal frequencies of damaged blades of wind turbines[J]. Noise and vibration control, 2020, 40(3): 89-92.
[9] 周勃, 张亚楠, 王琳琳, 等. 基于流固耦合的风力机叶片裂纹扩展机理研究[J]. 流体机械, 2017, 45(8): 19-23.
ZHOU B, ZHANG Y N, WANG L L, et al.Study on crack growth mechanism of wind turbine blade based on fluid solid coupling[J]. Fluid machinery, 2017, 45(8): 19-23.
[10] ZHOU B, ZHANG Y N, CHEN C Z.Acoustic emission detection of fatigue cracks in wind turbine blades based on blind deconvolution separation[J]. Fatigue and fracture of engineering materials and structures, 2017, 40(6): 959-970.
[11] 党永利. 风力机叶片动态特性及气弹稳定性分析[D]. 呼和浩特: 内蒙古工业大学, 2019.
DANG Y L.Analysis of dynamic characteristics and aeroelastic stability of wind turbine blades[D]. Hohhot: Inner Mongol University of Technology, 2019.
[12] 任年鑫, 李玉刚, 欧进萍. 浮式海上风力机叶片气动性能的流固耦合分析[J]. 计算力学学报, 2014, 31(1): 91-95.
REN N X, LI Y G, OU J P.Fluid-solid coupling analysis of aerodynamic performance of floating offshore wind turbine blades[J]. Chinese journal of computational mechanics, 2014, 31(1): 91-95.
[13] 邢帅恒. 风力机复合材料叶片铺层结构动力学分析[D]. 湘潭: 湘潭大学, 2013.
XING S H.Dynamic analysis of composite blade laying structure of wind turbine[D]. Xiangtan: Xiangtan University, 2013.
[14] TIAN K Q, SONG L, JIAO X F, et al.Aeroelastic stability analysis and failure damage evaluation of wind turbine blades under variable conditions[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2021, 22(5): 1-19.
[15] 赵元星, 汪建文, 白叶飞, 等. 切变来流下风力机叶片应力耦合性分析[J]. 工程热物理学报, 2019, 40(11):122-129.
ZHAO Y X, WANG J W, BAI Y F, et al.Stress coupling analysis of wind turbine blades under wind shear flow[J]. Journal of engineering thermophysics, 2019, 40(11): 122-129.
[16] 宋力, 党永利, 谢晓凤, 等. 基于流固耦合的风力机叶片模拟分析[J]. 可再生能源, 2019, 37(10): 1546-1550.
SONG L, DANG Y L, XIE X F, et al.Simulation analysis of wind turbine blade based on fluid-structure coupling[J]. Renewable energy resources, 2019, 37(10): 1546-1550.
[17] 彭英, 杨平, 柯叶君. 基于XFEM的平板斜裂纹动态扩展数值模拟[J]. 武汉理工大学学报(交通科学与工程版)2019, 43(2): 222-225.
PENG Y, YANG P, KE Y J.Numerical simulation of dynamic propagation of inclined cracks in plate based on XFEM[J]. Journal of Wuhan University of Technology (transportation science and engineering), 2019, 43(2):222-225.
[18] 王静. 复合材料风机叶片结构校核理论及数值仿真方法研究[D]. 成都: 西南交通大学, 2011.
WANG J.Research on the theory and numerical simulation method of composite material fan blade structure[D]. Chengdu: Southwest Jiaotong University, 2011.