针对多筒型基础气浮过程中的动力及运动响应问题,设计了筒间距为2.5倍筒直径的四筒型基础,通过比尺为1∶25的物理模型试验并结合数值模拟的方法,对结构在静水中的自振特性和规则波下运动响应的变化规律进行研究。研究结果表明:建立的数值分析模型能够较好地预测结构静水中自振特性以及波浪中运动响应的变化趋势;随着吃水的增加,该四筒型基础的有阻尼摇荡自振周期呈增大的趋势,而附加质量系数和阻尼比呈下降的趋势,结构摇荡运动的附加质量系数取值在1.4~1.7之间变化;吃水的增加能够改善结构的摇荡运动性能,但是增大了结构的垂荡响应以及接近纵摇角最大幅值的周期范围;水越浅,摇荡运动越大。
Abstract
Aiming at the dynamic and motion characteristics of multi-bucket foundation during air-floating, a four-bucket foundation with a distance between the buckets of 2.5 times diameter is designed. A combination approach of physical model tests with a scale of 1:25 and numerical models is adopted to investigate the natural vibration characteristics in still water and motion responses under regular waves. The results show that the natural vibration characteristics in still water and the change trend of motion responses in regular waves can be well predicted by numerical simulations. With the draft increasing, the damped natural vibration period increases, while the added mass coefficient and damping ratio decreases. The added mass coefficient varies between 1.4-1.7. Increasing draft can improve the oscillating motion performance of the structure, but it increases the heaving response and enlarges the periodic range of amplitude close to the maximum amplitude of pitching motion. The shallower the water, the greater the oscillating motion.
关键词
海上风电 /
筒型基础 /
附加质量系数 /
响应幅值算子 /
吃水 /
水深
Key words
offshore wind power /
bucket foundation /
added mass coefficient /
response amplitude operator /
draft /
water depth
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何炎平, 谭家华. 筒型基础的发展历史和典型用途[J]. 中国海洋平台, 2002, 17(6): 10-14.
HE Y P, TAN J H.The development history and typical application of bucket foundation[J]. China offshore platform, 2002, 17(6): 10-14.
[2] 王胜永. 桶型基础平台在渤海边际油田开发中的应用研究[D]. 大连: 大连理工大学, 2008.
WANG S Y.Application study of bucket foundations platform in developing marginal oilfield in Bohai Sea[D]. Dalian: Dalian University of Technology, 2008.
[3] 肖忠, 王元战, 及春宁, 等. 筒型基础防波堤稳定性有限元数值分析[J]. 土木工程学报, 2009, 42(2): 119-125.
XIAO Z, WANG Y Z, JI C N, et al.Finite element analysis of the stability of bucket foundation breakwater[J]. China civil engineering journal, 2009, 42(2): 119-125.
[4] 于通顺. 复合筒型基础动力响应及冲刷特性研究[D]. 天津: 天津大学, 2014.
YU T S.Research on dynamic response and local scour of composite bucket foundation[D]. Tianjin: Tianjin University, 2014.
[5] 张浦阳, 黄宣旭. 海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4): 1-11.
ZHANG P Y, HUANG X X.Application research on suction bucket foundation for offshore wind power[J]. South energy construction, 2018, 5(4): 1-11.
[6] ZHANG P Y, DING H Y, LE C H, et al.Towing characteristics of large-scale composite bucket foundation for offshore wind turbines[J]. Journal of Southeast University (English edition), 2013, 29(3): 300-304.
[7] 刘爱永. 可解脱吸力锚基础浮拖方案[J]. 中国造船, 2012, 53(S2): 28-35.
LIU A Y.Methods of towing releasable suction pile foundation in floating state[J]. Ship building of China, 2012, 53(S2): 28-35.
[8] 练继建, 赵悦, 练冲, 等. 基于电涡流-调谐质量阻尼器的海上风电筒型基础结构减振研究[J]. 振动与冲击, 2019, 38(19): 20-25.
LIAN J J, ZHAO Y, LIAN C, et al.Vibration reduction of offshore wind turbine tube infrastructures based on EC-TMD[J]. Journal of vibration and shock, 2019, 38(19): 20-25.
[9] 别社安, 时忠民, 王翎羽. 气浮结构的运动特性研究[J]. 中国港湾建设, 2001(2): 18-21, 25.
BIE S A, SHI Z M, WANG L Y.Study on kinetic properties of the air floated structures[J]. China harbour engineering, 2001(2): 18-21, 25.
[10] SEIDL L H.Development of an air stabilized platform[R]. Technical Report PB80-221997, 1980.
[11] BIE S A, JI C N, REN Z J, et al.Study on floating properties and stability of air floated structures[J]. China ocean engineering, 2002, 16: 263-272.
[12] LIU X Q, ZHANG P Y, ZHAO M J, et al.Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines[J]. Energies, 2019, 12(21): 4108.
[13] KESSEL J L F. Aircushion supported mega-floaters[D]. Delft: Delft University of Technology, 2010.
[14] THIAGARAJAN K P.Hydrostatic stability of compartmented structures supported by air cushions[J]. Journal of ship research, 2009, 53(3): 151-158.
[15] PINKSTER J A, FAUZI A, INOUE Y, et al.The behavior of large air cushion supported structures in waves[C]//Proceedings of Second International Conference Hydro-Elasticity in Marine Technology, Fukuoka, Japan, 1998: 497-509.
[16] MALENICA S, ZALAR M.Semi analytical solution for heave radiation of the air cushion supported vertical circular cylinder in water of finite depth[C]//16th International Workshop on Water Waves and Floating Bodies, Hiroshima, Japan, 2001: 1-4.
[17] 刘宪庆. 气浮筒型基础拖航稳性和动力响应研究[D]. 天津: 天津大学, 2012.
LIU X Q.Study on stability and dynamic response for towing of air-floating bucket foundation[D]. Tianjin: Tianjin University, 2012.
[18] 张学栋. 一种气垫式风机支撑平台的绕射及垂荡动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
ZHANG X D.The analysis of diffraction and heave dynamic performance for a floating wind turbine platform supported by aircushion[D]. Harbin: Harbin Engineering University, 2018.
[19] LEE C H, NEWMAN J N.An extended boundary integral equation for structures with oscillatory free-surface pressure[J]. International journal of offshore and polar engineering, 2016, 26(11): 41-47.
[20] 丁红岩, 黄旭, 张浦阳, 等. 筒型基础平台气浮拖航的影响因素分析[J]. 工程力学, 2012, 29(10), 193-198.
DING H Y, HUANG X, ZHANG P Y, et al.Analysis on influence factors of towing of air float bucket foundation platform[J]. Engineering mechanics, 2012, 29(10): 193-198.
[21] 闵巧玲. 复合筒型基础稳性及拖航运动特性分析[D]. 天津: 天津大学, 2018.
MIN Q L.Analysis of stability and towing motion characteristics of composite bucket foundation[D]. Tianjin: Tianjin University, 2018.
[22] 徐宝. 筒型基础结构附加质量系数的模型试验研究[D]. 天津: 天津大学, 2006
XU B.The model test study on added mass coefficient of bucket foundation structure[D]. Tianjin: Tianjin University. 2006.
[23] 刘应中. 船舶兴波阻力理论[M]. 北京: 国防工业出版社, 2003.
LIU Y Z.Theory of ship wave making resistance[M]. Beijing: National Defense Industry Press, 2003.
基金
国家重点研发计划(2018YFC0810402); 国家自然科学基金(51679163); 水利工程仿真与安全国家重点实验室开放基金(HESS15-12); 重庆英才计划·创新创业示范团队(CQYC201903204)