中深层地热单井循环系统传热强化方法研究

朱强, 杨轩, 马凌, 李扬, 赵军

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 410-417.

PDF(2296 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2296 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 410-417. DOI: 10.19912/j.0254-0096.tynxb.2021-0808

中深层地热单井循环系统传热强化方法研究

  • 朱强, 杨轩, 马凌, 李扬, 赵军
作者信息 +

RESEARCH ON HEAT TRANSFER ENHANCEMENT METHOD OF MEDIUM-DEEP SINGLE GEOTHERMAL WELL CIRCULATION SYSTEM

  • Zhu Qiang, Yang Xuan, Ma Ling, Li Yang, Zhao Jun
Author information +
文章历史 +

摘要

针对中深层地热单井循环系统井内热贯通导致的换热功率低的问题,提出一种内管末端变径的井下传热强化方法,并建立数值模型,利用FLUENT进行为期30 d的模拟计算。结果表明,采用内管末端变径的方式能有效增强地下水“互动”,充分利用含水层的高温来提高单井换热功率。将井下换热分为导热区和采灌区两部分,随着封堵比例的增加,抽水中的含水层补给占比增加,且采灌区换热功率在系统换热功率中的占比逐渐增加。当封堵比例增大到100%时,采灌区换热功率达到导热区的1.76倍,井口出水温度可基本稳定在58 ℃,系统换热功率稳定在约995.46 kW,相较于内管等径系统,换热功率可提高84.71%。同时,单井循环系统仅导热区的延米换热量就可达到154.23~216.89 W/m,超过了闭式同轴套管换热系统稳定运行的最高延米换热功率,而系统换热功率可达到闭式系统的3.57~6.60倍,在单井换热系统中具有显著优势。

Abstract

To solve the problem of low heat transfer power caused by thermal penetration in medium-deep single geothermal well circulation(SGWC) systems, a heat transfer enhancement method is proposed in this paper by changing the diameter of inner pipe at the end of the downhole heat exchanger. A numerical model is established by the FLUENT software and a numerical study is carried out with the calculation time of 30 days. The results show that the method of diameter enlargement at the end of the inner pipe can effectively enhance the "interaction" of groundwater and thus more water with high temperature can be pumped from the pumping aquifer to increase the heat transfer power. In this analysis, the downhole heat transfer zone is divided into two parts, which are the conduction zone(CZ) and the pumping and recharging zone(PRZ). As the blockage ratio increases, the proportion of the aquifer recharge in the pumping water increases, meanwhile, the heat transfer power of the PRZ are gradually increasing in the system. If the blockage ratio increases to 100%, the outlet temperature and heat transfer power can gradually stabilize at 58 ℃ and 995.46 kW respectively, with the heat transfer rate ratio between PRZ and CZ reaching 1.76. Compared to the single geothermal well circulation without enlarged-diameter inner pipes, the heat transfer rates can be increased by 84.71%. Furthermore, under the stable operation, the heat transfer amount flux per meter of SGWC system in the CZ is 154.23-216.89 W/m, which exceeds the highest value of the downhole coaxial deep well heat exchanger, and the ratio of the heat transfer power in the mentioned two systems varies from 3.57 to 6.60 under different operation conditions. The numerical study shows that SGWC system has great advantages.

关键词

地热供暖 / 废弃井 / 地下水回灌 / 数值模拟 / 传热性能

Key words

geothermal heating / abandoned wells / recharging(underground waters) / numerical simulation / heat transfer performance

引用本文

导出引用
朱强, 杨轩, 马凌, 李扬, 赵军. 中深层地热单井循环系统传热强化方法研究[J]. 太阳能学报. 2023, 44(1): 410-417 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0808
Zhu Qiang, Yang Xuan, Ma Ling, Li Yang, Zhao Jun. RESEARCH ON HEAT TRANSFER ENHANCEMENT METHOD OF MEDIUM-DEEP SINGLE GEOTHERMAL WELL CIRCULATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 410-417 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0808
中图分类号: TK124   

参考文献

[1] 中华人民共和国住房和城乡建设部. 推进北方采暖地区城镇清洁供暖[EB/OL].http://www.mohurd.gov.cn/zxydt/201709/t20170920_233357.html.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Promote clean heating in cities and towns in northern areas[EB/OL].http://www.mohurd.gov.cn/zxydt/201709/t20170920_233357.html.
[2] 河北省自然资源厅, 河北省水利厅关于加强地热开发利用管理的通知[EB/OL]. http://zrzy.hebei.gov.cn/heb/gongk/gkml/zcwj/zcfgk/zck/101559637117577.html.(2019-04-18).
Notice of Department of Natural Resources of Hebei Province and Department of Water Resources of Hebei Province on Strengthening Management of Geothermal Development and Utilization[EB/OL]. http://zrzy.hebei.gov.cn/heb/gongk/gkml/zcwj/zcfgk/zck/101559637117577.html.(2019-04-18).
[3] 天津市规划和自然资源局. 天津市地热资源管理实施办法[EB/OL]. http://ghhzrzy.tj.gov.cn/zwgk_143/zcwj/jjzcwj/202012/t20201213_4963175.html.(2019-04-15).
Tianjin Municipal Bureau of Planning and Natural Resources. Tianjin Geothermal Resources Management Implementation Measures[EB/OL]. http://ghhzrzy.tj.gov.cn/zwgk_143/zcwj/jjzcwj/202012/t20201213_4963175.html.(2019-04-15).
[4] 山西省住房和城乡建设厅. 关于进一步推进地热能供热技术应用的通知(第97号)[EB/OL]. https://zjt.shanxi.gov.cn/Main/cmsContent.action?articleId=2881c113-86ca- 4a98-b965-530526be69da. (2020-06-24).
Department of Housing and Urban-Rural Development of Shanxi Province. Notice on Further Promoting the Application of Geothermal Energy Heating Technology (No. 97)[EB/OL]. https://zjt.shanxi.gov.cn/Main/cmsContent.action?articleId=2881c113-86ca-4a98-b965-530526be69da. (2020-06-24).
[5] WANG S J, YAN J H, LI F, et al.Exploitation and utilization of oilfield geothermal resources in China[J]. Energies, 2016, 9: 798-810.
[6] CAULK R A, TOMAC I.Reuse of abandoned oil and gas wells for geothermal energy production[J]. Renewable energy, 2017, 112: 388-397.
[7] MA L, ZHAO Y Z, YIN H M, et al.A coupled heat transfer model of medium-depth downhole coaxial heat exchanger based on the piecewise analytical solution[J]. Energy conversion and management, 2020, 204: 112308.
[8] 孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752.
KONG Y L, CHEN C F, SHAO H B, et al.Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese journal of geophysics, 2017, 60(12): 4741-4752.
[9] 李思奇, 赵军, 李扬, 等. 闭式中深层井下换热数值模拟与内管分段绝热影响研究[J]. 太阳能学报, 2020, 41(11): 369-374.
LI S Q, ZHAO J, LI Y, et al.Numerical simulation of closed loop medium-deep downhole heat exchange: a focus on influence of segmented insulation on central pipe[J]. Acta energiae solaris sinica, 2020, 41(11): 369-374.
[10] 卜宪标, 冉运敏, 李华山, 等. 既有地热单井采暖系统换热量的增强方法[J]. 太阳能学报, 2020, 41(10): 369-374.
BU X B, RAN Y M, LI H S, et al.Enhancing heat transfer methods of existing geothermal single well heating system[J]. Acta energiae solaris sinica, 2020, 41(10): 369-374.
[11] DAI C S, LI J S, SHI Y, et al.An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design[J]. Applied energy, 2019, 252: 113447.
[12] JGJ 142—2012, 辐射供暖供冷技术规程[S].
JGJ 142—2012, Technical specification for radiant heating and cooling[S].

基金

天津市科技计划(20YFYSGX00020); 中国科学院科技服务网络计划(STS)(KFJ-STS-QYZD-2021-02-006)

PDF(2296 KB)

Accesses

Citation

Detail

段落导航
相关文章

/