为研究混合太阳能燃气轮机系统的现实应用需构建实验系统,通常的思路是采用目前性能较好的型号燃气轮机与太阳能集热加热组件耦合,但耦合后的系统性能指标相对型号燃气轮机受到限制。对此限制的原因进行热力学性能原理分析,并利用EBSILON软件建立型号燃气轮机仿真模型和混合太阳能微型燃气轮机实验系统计算模型,通过计算验证热力学性能原理分析结果,发现燃烧室通流能力是系统性能指标的主要限制因素,并提出增加压气机压比和提高燃烧室通流能力、更好地组织燃烧可作为系统优化方向。
Abstract
In order to study the practical utilization of the solar-hybrid gas turbine system, constructing an experimental system is necessary. The usual idea to do so is to couple the current well-performed model gas turbine with the solar collection and heating component. However, the performance indicators of the coupled system are limited compared to those of the model gas turbine. In this paper, the thermodynamic performance principle analysis for the reasons of performance limitation is carried out. The EBSILON software is used to establish the simulation model of the model gas turbine and the calculation model of the solar-hybrid micro gas turbine experimental system. The thermodynamic performance principle analysis result is verified by calculation. The flow capacity of the combustion chamber is found to be the main factor limiting the system performance. Increasing the compression ratio of the compressor and the flowing capacity of the combustion chamber, organizing better combustion are given as system optimization directions.
关键词
性能指标 /
优化 /
混合太阳能燃气轮机 /
限制因素 /
压力保持系数
Key words
performance indicators /
optimization /
solar hybrid gas turbine /
limiting factors /
pressure maintenance factors
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BUCK R, FRIEDMANN S.Solar-assisted small solar tower trigeneration systems[J]. Journal of solar energy engineering, 2007, 129(4): 349-354.
[2] CAMERETTI M C, DE ROBBIO R, PIRONE E, et al.Thermo-economic analysis of a hybrid solar micro gas turbine power plant[J]. Energy procedia, 2017, 126: 667-674.
[3] ABAGNALE C, CAMERETTI M C, DE ROBBIO R, et al.Thermal cycle and combustion analysis of a solar-assisted micro gas turbine[J]. Energies, 2017, 10(6): 773.
[4] SEMPRINI S, SÁNCHEZ D, DE PASCALE A. Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions[J]. Solar energy, 2016, 132: 279-293.
[5] 黄德中, 方栋华, 许沧粟. 塔式太阳能热发电中冷回热再热燃气轮机循环研究——功率与效率[J]. 绍兴文理学院学报(自然科学), 2012, 32(3): 21-24.
HUANG D Z, FANG D H, XU C S.Power and efficiency of an irreversible closed intercooling reheating and regenerated Brayton cycle coupler in tower-typed solar energy thermal power generation[J]. Journal of Shaoxing University (natural science), 2012, 32(3): 21-24.
[6] 黄德中. 塔式太阳能燃气轮机循环热发电技术研究[J]. 绍兴文理学院学报(自然科学), 2011, 31(1): 38-41.
HUANG D Z.Study of closed Brayton cycle in tower solar thermal power generation[J]. Journal of Shaoxing University (natural science) , 2011, 31(1): 38-41.
[7] 王诚. 太阳能空气高温集热与陶瓷蓄热的数值模拟和试验研究[D]. 杭州: 浙江大学, 2015.
WANG C.Simulation and experimental study of high-temperature air solar collector and ceramic thermal storage[D]. Hangzhou: Zhejiang University, 2015.
[8] WANG W, MALMQUIST A, AICHMAYER L, et al.Transient performance of an impinging receiver: an indoor experimental study[J]. Energy conversion and management, 2018, 158: 193-200.
[9] AL-ATTAB K A, ZAINAL Z A. Externally fired gas turbine technology: a review[J]. Applied energy, 2015, 138: 474-487.
[10] KAUTZ M, HANSEN U.The externally-fired gas-turbine (EFGT-cycle) for decentralized use of biomass[J]. Applied energy, 2007, 84(7): 795-805.
[11] 翁史烈, 王永泓, 宋华芬, 等. 现代燃气轮机装置[M]. 上海: 上海交通大学出版社, 2015: 19-21.
WENG S L, WANG Y H, SONG H F, et al.Advanced gas turbine engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 19-21.
[12] LEFEBVRE A H, BALLAL D R.Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton: CRC Press, 2010: 113-117.
[13] 潘颢丹, 贾冯睿. 工程热力学[M]. 北京: 化学工业出版社, 2020: 66-71, 156-162.
PAN H D, JIA F R.Engineering thermodynamics[M]. Beijing: Chemical Industry Press, 2020: 66-71, 156-162.
[14] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版, 2008: 9-11.
LIN Y Z, XU Q H, LIU G E.Gas turbine combustor[M]. Beijing: National Defense Industry Press, 2008: 9-11.
[15] ISO 13443—1996, 天然气标准参比条件[S].
ISO 13443—1996, Natural gas standard reference conditions[S].
[16] MESSINA G, BO A, NOBILI M, et al.Aergia number: a new non-dimensional group for gas turbine power estimation[J]. International journal of energy research, 2020, 45(2): 3200-3213.
[17] KHUSNIDDIN A, TRAN D X, OSAMU H, et al.Analysis of environmental effect of hybrid solar-assisted desalination cycle in Sirdarya thermal power plant, Uzbekistan[J]. Applied thermal engineering, 2017, 111: 894-902.
[18] EDUARDO K B, TOBIAS V, SVEN M, et al.Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant[J]. Energy, 2016, 117(2): 416-428.
[19] PIERRE G, ALAIN F, GILLES F, et al.Solar field efficiency and electricity generation estimations for a hybrid solar gas turbine project in France[J]. Journal of solar energy engineering, 2008, 130(1): 014502.