考虑寄生电感的SiC MOSFET半桥电路串扰峰值预测方法

杜明星, 边维国, 欧阳紫威

太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 16-23.

PDF(1946 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1946 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (1) : 16-23. DOI: 10.19912/j.0254-0096.tynxb.2021-0824

考虑寄生电感的SiC MOSFET半桥电路串扰峰值预测方法

  • 杜明星1, 边维国1, 欧阳紫威1,2
作者信息 +

CROSSTALK PEAK PREDICTION METHOD FOR HALF-BRIDGE CIRCUIT OF SiC MOSFET CONSIDERING PARASITIC INDUCTANCE

  • Du Mingxing1, Bian Weiguo1, Ouyang Ziwei1,2
Author information +
文章历史 +

摘要

针对光伏并网逆变器中的串扰问题,提出一种考虑寄生电感影响的非开尔文封装SiC MOSFET串扰峰值预测算法。以TO-247-3封装SiC MOSFET构成的半桥电路为研究对象,首先分析各个阶段的串扰电压数学模型,并推导串扰电压的微分表达式;其次提出串扰峰值的预测算法,建立预测峰值所需参数的数学模型;最后搭建实验平台,验证理论的正确性和算法的有效性,为设计光伏并网逆变器的驱动和保护电路提供参考依据。

Abstract

Aiming at the crosstalk problem in photovoltaic grid-connected inverter, a crosstalk peak prediction algorithm for non-Kelvin packaged SiC MOSFET considering the effect of parasitic inductance is proposed. The half-bridge circuit composed of To-247-3 package SiC MOSFET is studied. Firstly, the mathematical model of crosstalk voltages in each stage are analyzed, and the differential expressions of crosstalk voltage are derived; Secondly, the prediction algorithm of crosstalk peak is proposed, and the mathematical models of the parameters required to predict the crosstalk peak are established; Finally, an experimental platform is built to verify the correctness of the theory and the effectiveness of the algorithm.

关键词

碳化硅 / MOSFET / 串扰 / 并网逆变器 / 寄生电感 / 半桥电路

Key words

silicon carbide / MOSFET / crosstalk / grid-connected inverter / parasitic inductance / half-bridge circuit

引用本文

导出引用
杜明星, 边维国, 欧阳紫威. 考虑寄生电感的SiC MOSFET半桥电路串扰峰值预测方法[J]. 太阳能学报. 2023, 44(1): 16-23 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0824
Du Mingxing, Bian Weiguo, Ouyang Ziwei. CROSSTALK PEAK PREDICTION METHOD FOR HALF-BRIDGE CIRCUIT OF SiC MOSFET CONSIDERING PARASITIC INDUCTANCE[J]. Acta Energiae Solaris Sinica. 2023, 44(1): 16-23 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0824
中图分类号: TM46   

参考文献

[1] 曹娜, 李文强, 于群. 数字控制三相并网逆变器改进离散模型[J]. 太阳能学报, 2020, 41(4): 357-365.
CAO N, LI W Q, YU Q.Improved discrete-time model of digital controlled three-phase grid-connected inverter[J]. Acta energiae solaris sinica, 2020, 41(4): 357-365.
[2] 郑晓明, 蔡彬, 褚晓广, 等. 并网逆变器二自由度控制策略研究[J]. 太阳能学报, 2019, 40(4): 995-1002.
ZHENG X M, CAI B, CHU X G, et al.Research on two-degree-freedom control strategy of grid-connected inverter[J]. Acta energiae solaris sinica, 2019, 40(4): 995-1002.
[3] 王雪梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379.
WANG X M.Researches and applications of wide bandgap SiC power device in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379.
[4] 罗映红, 黄林柯, 李重阳, 等. 超导磁储能电压源型变流器系统电磁干扰分析[J]. 太阳能学报, 2017, 38(9): 2337-2343.
LUO Y H, HUANG L K, LI C Y, et al.Investigation of EMI of voltage source converter for superconducting magnetic energy storage[J]. Acta energiae solaris sinica, 2017, 38(9): 2337-2343.
[5] ZHANG B Y, WANG S.A crosstalk suppression technique for SiC MOSFETs in the bridge-leg configuration[C]//2020 IEEE Applied Power Electronics Conference and Exposition(APEC), New Orleans, LA,USA, 2020:1513-1520.
[6] 陈滢, 李成敏, 鲁哲别, 等. 半桥结构中的SiC MOSFET串扰电压建模研究[J]. 中国电机工程学报, 2020, 40(6): 1775-1786.
CHEN Y, LI C M, LU Z B, et al.Modeling of SiC MOSFET crosstalk voltage in half bridge circuit[J]. Proceedings of the CSEE, 2020, 40(6): 1775-1786.
[7] MURATA K, HARADA K.A self turn-on mechanism of the synchronous rectifier in a DC-DC converter[C]//International Telecommunications Energy Conference, Chicago, IL, USA, 2004: 642-646.
[8] ZHANG Z Y, ZHANG W M, WANG F, et al.Analysis of the switching speed limitation of wide band-gap devices in a phase-leg configuration[C]//Energy Conversion Congress and Exposition, Raleigh, NC, USA, 2012: 3950-3955.
[9] JAHDI S, ALATISE O, ORTIZ GONZALEZ J A, et al. Temperature and switching rate dependence of crosstalk in Si-IGBT and SiC power modules[J]. IEEE transactions on industrial electronics, 2016, 63(2): 849-863.
[10] LI H, JIANG Y F, QIU Z D, et al.Predictive algorithm for crosstalk peaks of SiC MOSFET by considering the nonlinearity of gate-drain capacitance[J]. IEEE transactions on power electronics, 2021, 36(3): 2823-2834.
[11] LI Y, LIANG M, CHEN J G, et al.A low gate turn-off impedance driver for suppressing crosstalk of SiC MOSFET based on different discrete packages[J]. IEEE journal of emerging and selected topics in power electronics, 2019, 7(1): 353-365.
[12] LI C M, LU Z B, CHEN Y, et al.High off-state impedance gate driver of SiC MOSFETs for crosstalk voltage elimination considering common-source inductance[J]. IEEE transactions on power electronics, 2020, 35(3): 2999-3011.
[13] WEN Y, YANG Y, GAO Y.Model parameter calibration method of SiC power MOSFETs behavioural model[J]. IET power electronics, 2020, 13(3): 426-435.
[14] HAN Y, LU H F, LI Y D, et al.Open-loop gate control for optimizing the turn-on transition of SiC MOSFETs[J]. IEEE journal of emerging and selected topics in power electronics, 2019, 7(2): 1126-1136.
[15] RIAZMONTAZER H, MAZUMDER S K.Optically switched-drive-based unified independent dv/dt and di/dt control for turn-off transition of power MOSFETs[J]. IEEE transactions on power electronics, 2015, 30(4): 2338-2349.
[16] YANG Y, WEN Y, GAO Y.A novel active gate driver for improving switching performance of high-power SiC MOSFET modules[J]. IEEE transactions on power electronics, 2019, 34(8): 7775-7787.
[17] WANG J, CHUNG H S, LI R T.Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE transactions on power electronics, 2013, 34(8): 573-590.

基金

天津市技术创新引导专项基金(20YDTPJC00510)

PDF(1946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/